
WIDE Toolbox Manual

Davide Barcelli and Nick Bauer and Pavel Trnka

2

Contents

1 Classes definition 7
1.1 LSmodel . 7
1.2 WNmodel . 14
1.3 acg . 16
1.4 decLMI . 19
1.5 dlincon . 23
1.6 eampc . 27
1.7 himpc . 32
1.8 ncs . 36

2 Examples 37
2.1 LSmodel . 37
2.2 WNmodel . 59
2.3 acg . 69
2.4 decLMI . 75
2.5 dlincon . 88
2.6 eampc . 92
2.7 himpc . 101
2.8 dncs . 131
2.9 hncs . 134

3

4 CONTENTS

Introduction

The Toolbox for Matlab is named after the project “WIDE - Decentralized and Wireless Control
of Large-Scale Systems”, contract num- ber FP7-IST-224168 of the European Commission which
founded its development and is downloadable for free at the URL http://ist-wide.dii.unisi.

it/index.php?p=toolboxsp.
The WIDE Toolbox for Matlab is set of functionalities oriented to centralized and decentral-
ized/distributed Large-Scale control that takes explicitly into account network effects. The use of
Object-Oriented programming ensures the usability of the present tools in any context.
Due to both wiring costs and improved reliability of wireless communication, nowadays many con-
trol systems sensor-to-controller and controller-to-sensor connections are implemented in the filed
without a physical wire. Such fact expose the plant to inconstant, unpredictable but “describable”
negative effects introduced by the network between the control system components.
Moreover, the layout of the plant may cover a considerably large physical space on the the field
thus worsening the network effects. Such wide spread is closely connected with the complexity of
the control system that is composed by many outputs/inputs and consequently internal states. In
almost all systems actuator saturations or safety policies impose some sort of constraint involving
plant variables, therefore making it crucial to have a constraint-handling controller.
In this Toolbox the general orientation is toward Model Predictive Control (MPC), which however
suffer the so called “curse of dimensionality”, i.e. the control computation complexity increases
with the size of the plant. To cope with this and successfully apply the control approach to large-
scale systems we propose decentralized/distributed versions of MPC in which the main idea is to
decompose the plant model in a number of independent subsystem. Then for each of subsystem
the control law is computed individually and a coordination/iterative consensus procedure may
take place afterwords to improve performances and generalization.

Components

The toolbox is organized in three main areas, dealing with previously listed issues.

• DHMPC (developed by UNISI1, UNITN2 and IMTL3) offer to the user decentralized con-
trol strategies that accounts for some major network effects(dlincon,HiMPC,decLMI), facili-
ties for wireless network simulation using TrueTime (ACG), energy aware control strategies
(eampc);

• LSMM (developed by HPL4) is mostly oriented to model and analyze a large-scale system
by providing standard analysis functionalities (LSmodel), e.g. Bode and Nyquist diagrams,
and decentralization procedure (ε-decomposition), with particular focus to water networks
(WNmodel) and network aware Kalman filtering (NKF);

• NCS (developed by TU/e5) is concerned with network effects which are dealt with using
discretized and hybrid models (ncs) and network linear controller synthesis available also
with a Graphical User Interface.

For a detailed description of each component the reader is redirected to either component class
description or the corresponding section of the examples.

Requirements

The offered functionalities cover a wide spread of requirements, thus find below an individual list.

1University of Siena
2University of Trento
3Institution Market Technologies - Institute for Advanced Studies Lucca
4Honeywell Prague
5Eindhoven University of Technology

http://ist-wide.dii.unisi.it/
http://ist-wide.dii.unisi.it/
http://ist-wide.dii.unisi.it/index.php?p=toolboxsp
http://ist-wide.dii.unisi.it/index.php?p=toolboxsp

CONTENTS 5

• acg, Automatic Code Generation is an interface for TrueTime 1.5 code generation, thus
requires TrueTime.

• decLMI Decentralized LMI is a tool for synthesize linear decentralized controller for TLI
systems that needs to solver a Semi Definite Programming problem, thus requires Yalmip,
included in MPT Toolbox, and, possibly, Cplex as solver;

• dlincon is a decentralized version of lincon, function of the Hybrid toolbox for linear MPC,
require the hybrid toolbox;

• eampc Energy Aware MPC is a sensor battery saving control policy, requires the MPT
Toolbox;

• HiMPC is a Decentralized Herarchical MPC strategy, requires MPT Toolbox and, possibly,
Cplex solver.

• LSmodel is Large Scale Model Management class, Control System Toolbox (included in
Matlab) and BGL Toolbox;

• ncs Networked Control System requires Linsyskit;

• NKF Networked Kalman Filer have ho requirements;

• sensorCommunicator 6 is an interface to E-Senza nodes7 and Telos Motes devices 8 and
requires the devices;

• WNmodel is an extension of LSmodel specialized for Water networks, thus requires LSmodel.

In the toolbox download page a zipped version of all requirements (excluding IBM Ilog Clpex,
shareware software available for universities via IBM Academic Initiative) is available. Some
components are boosted in terms of execution speed by using Matlab Mex Files (included); for a
guide on mex compilation see www.dii.unisi.it/~barcelli/software.php

6Still under development
7http://www.e-senza.com/
8http://www.willow.co.uk/html/telosb_mote_platform.html

www.dii.unisi.it/~barcelli/software.php
http://www.e-senza.com/
http://www.willow.co.uk/html/telosb_mote_platform.html

6 CONTENTS

Chapter 1

Classes definition

1.1 LSmodel

LSmodel is a class for representation and management of Large Scale (LS) models. LS model is
described as a set of submodels together with description of submodels mutual interconnections
and submodels interconnections with external inputs and outputs.

Signal interconnections is name based, i.e. to define that outputs and intpus of certain submodels
are conneted requires to give them the same names. Submodels are internally represented as state-
space models. However any model type, which can be converted by SS command, can by supplied
as submodel and original model is stored in LSmodel class along with its state-space conversion.

LS model is created from a set of submodels with named inputs and outputs (at least intercon-
nection signals should be named), a set of summator created for example by SUMBLK commands
and string cell arrays defining external inputs and outputs (see LSmodel example.m). The model
can be later modyfied by adding new submodels, removing submodels, adding/removing external
inputs/outputs.

LS model supports specification of different signal types for each signal

| Signal Type | Abbreviation | Channel |

| Manipulated | MV | Input |

| Measured Disturbances | MD | Input |

| Unmeasured Disturbances | UD | Input |

| Measured Outputs | MO | Output |

| Unmeasured Outputs | UO | Output |

| Internal Signal | X | -- |

and specification of signal limits (min/max values, min/max slopes,...). This information is later
used for estimator and/or controller design.

LSmodel has methods for structured model order reduction, decomposition of subsystems into
groups for distributed control/estimation and merging of information from multiple models into
single one.

Model structure can be ploted by overloaded plot command and model analysis can be done by
many standard overloaded functions (see bellow).

7

8 CHAPTER 1. CLASSES DEFINITION

State-space model of full LSmodel can be obtained by SS method. Parts of model can be obtained
either for selected inputs and outputs or by extracting group of subsystems, where grouping
information may be a result of built-in decomposition method.

Methods

LSmodel - constructor, compatible with Matlab connect function

add_mod - adds submodel to LS model

add_sum - adds summator (creates new internal signal)

add_ext_inp - adds external input to LS model

add_ext_out - adds external output from LS model

rem_mod - removes submodel from LS model

rem_sum - removes summator

rem_ext_inp - removes external input

rem_ext_out - removes external output

set_sig_type - signal types according to the MPC toolbox

set_sig_lim - set signal limits (min/max, delta min/max)

set_sig_data - assigns (user) data structure to selcted signal(s)

select - extracts part of the model for selected inputs and

outputs

group - extracts subsystems belonging to given group

squeeze - remove unused external inputs/outputs and unconnected

submodels

struct_red - structured model order reduction

merge - merging of ARX models of different structure

freq_uncert - return frequency uncertainty for ARX model

eps - epsilon decomposition

bbd - Border Block Diagonal decomposition

display - presents the model content and shows the numbering of

subsystems, summators, inputs and outputs

n - returns total order (sum of subsystems order)

orders - returns subsystems orders

plot - plots interaction between subsystems

Overloaded functions

dcgain, pole, zero, impulse, step, bode, nyquist, pzmap, iopzmap,

ss, ...

Internal model structure

Internal model structure can be seen in the following figure. The signal names are:

w ... external inputs to LS model

z ... external outputs from LS model

u ... aggregated inputs to submodels

y ... aggregated outputs from submodels

1.1. LSMODEL 9

Submodels are stored in cell array M as state-space models. The original models supplied by the
user are stored in cell array Morig. External model inputs are stored in string cell array Wnames

and outputs in Znames. Static interconnections matrices Lzw,Lzy,Luw,Luy represent submodels
mutual interconnections and submodel interconnections with external inputs and outputs. They
are automatically computed after each model modification.

Contents

• LSmodel Constructor
• Remove Model
• Remove Summator
• Add Model
• Add Summator
• Remove External Input
• Add External Input
• Remove External Output
• Add External Output
• Display Object
• Return Global Model Order
• Return Orders of Subsystems
• Get Global SS Model
• Epsilon Decomposition
• Set Signal Type
• Set Signal Limits
• Set Signal Data
• Master Connection Matrix

10 CHAPTER 1. CLASSES DEFINITION

• Extract model part for given external inputs and outputs

• Extract submodels belonging to given group

• Remove unused external inputs/outputs and submodels

• Structured Model Order Reduction

• Merging of uncertain models

• Frequency uncertainty of ARX model

• Static Methods

• Plot LS model structure

LSmodel Constructor

LSMODEL(X1,...,Xn, INPUT NAMES, OUTPUT NAMES) constructs large scale model by specifying
a set of submodels, summators and a list of external input and output names. Internal connections
are automatically created by matching signal names. Xi are models or summators (single or in a
cell array). INPUT NAMES and OUTPUT NAMES are cell arrays of strings with external input
and output names. Summators can be created by command SUMBLK. Examples:

mod = LSmodel(M,sum,{’fuel’,’demand’},{’pressure’,’flow’});

mod = LSmodel(M1,M2,M3,M4,sum1,sum2,{’fuel’,’demand’},{’pressure’,’flow’});

M is cell array of models (ss,tf,...) with named inputs and outputs. SUM is cell array of summators
created by SUMBLK.

Constructor is compatible with standard CONNECT function. It is also possible to
construct the model by using CONNECT compatible numeric indexing of inputs and outputs (see
help on CONNECT). However, name based signal referencing will be prefered as numeric indexing
may be confusing for large scale models.

Remove Model

REM MOD(OBJ,PAR) removes model from large scale system. PAR is a vector of indexes or string
cell array of model names to be deleted. (model indexes are shown by display function)

Remove Summator

REM SUM(OBJ,PAR) removes summator from large scale system. PAR is the index or the name of
the summator to be deleted. Summator indexes are shown by display function.

Add Model

ADD MOD(OBJ,NEWM) adds new model NEWM to large scale model class and connects it according
to the input / output names. NEWM can be a cell array of models.

1.1. LSMODEL 11

Add Summator

ADD SUM(OBJ,NEWS) adds new summator to the model and connects it according the input/output
names. Numeric based interconnection is not possible. NEWS can be an array of summators.

Summator can be created by SUMBLK function.

Remove External Input

REM EXT INP(OBJ,PAR) Removes external input. PAR can be input index or its NAME.

Add External Input

ADD EXT INP(OBJ,NAME) adds external input named NAME.

Remove External Output

REM EXT OUT(OBJ,PAR) Removes external output. PAR can be output index or its NAME.

Add External Output

ADD EXT OUT(OBJ,NAME) adds external output named NAME.

Display Object

DISPLAY Displays basic information about LSmodel.

Return Global Model Order

N=N(OBJ) returns global model order as a sum of subsystem orders.

Return Orders of Subsystems

N=ORDERS(OBJ) returns orders of subsystems in array

Get Global SS Model

MOD=SS(obj) returns state space model of the whole model.

12 CHAPTER 1. CLASSES DEFINITION

Epsilon Decomposition

EPS(OBJ,N TARGET) finds \epsilon decomposition of water network model after leafs condensation.
Decomposes the network to N TARGET subnetworks.

Set Signal Type

SET SIG TYPE(OBJ,NAMES,TYPE) - set type of signals for MPC design. Signal types are compatible
with MPC toolbox:

| Signal Type | Abbreviation | Channel |

| Manipulated | MV | Input |

| Measured Disturbances | MD | Input |

| Unmeasured Disturbances | UD | Input |

| Measured Outputs | MO | Output |

| Unmeasured Outputs | UO | Output |

| Internal Signal | X | -- |

MODEL is name or index of submodel. SIGNALS is a cell of input names or their indexes and
TYPE is abbreviation of signal type (MV,MD,UD).

Set Signal Limits

SET SIG LIM(OBJ,NAMES,MIN,MAX,DMIN,DMAX,SMIN,SMAX) sets MIN / MAX limits on absolute
values, sets DMIN / DMAX limits on speed of change and sets SMIN / SMAX soft limits on
absolute values. Limits are applied to signal(s) specified by name in NAMES

SET SIG LIM(OBJ,NAMES,MIN,MAX,DMIN,DMAX) sets MIN / MAX limits on absolute values and
sets DMIN / DMAX limits on speed of change.

SET SIG LIM(OBJ,NAMES,MIN,MAX) sets MIN / MAX limits on absolute values.

SET SIG LIM(OBJ,NAMES) removes all limits (sets them to inf).

Set Signal Data

SET SIG DATA(OBJ,NAMES,DATA) assigns user data structure to signal(s) specified in NAMES.

Master Connection Matrix

[MZW,MZY,MUW,MUY] = MASTERL(OBJ) returns aggregated matrices indicating connection between
external inputs, submodels and external outputs.

1.1. LSMODEL 13

Extract model part for given external inputs and outputs

NOBJ = SELECT(OBJ,INPUTS,OUTPUTS) extracts part of the model for selected inputs and outputs.
Submodels, which are not conotrllable or observable from selected inputs and outputs are not
included in extracted model. INPUTS and OUTPUTS can be cell array of inputs/outputs signal
names or their numerical index (see DISP).

NOBJ = SELECT(OBJ,INPUTS,OUTPUTS,OPT) parameter OPT controls, which submodels are kept
and which are removed from final model:

’io’ eliminates submodels, which are not controllable and/or

observable

’full’ keep all submodels

’ss’ (default) eliminates submodels which are not

controllable and observable are removed

Extract submodels belonging to given group

NOBJ = GROUP(OBJ,GR IND) extracts parts of LS model, where submodels belong to the group(s)
specified in vector GR IND.

Remove unused external inputs/outputs and submodels

NOBJ = SQUEEZE(OBJ) removes external inputs and outputs, which are not connected to any
submodels and also removes submodels which are not connected anything.

Structured Model Order Reduction

OBJ = STRUCT RED(OBJ,N TARGET) reduces total model order to N TARGET while preserving
model structure.

Algorithm: Henrik Sandberg, Richard M. Murray: ”Model reduction of interconnected linear
systems”. Optimal Control, Applications and Methods, Special Issue on Directions, Applications,
and Methods in Robust Control, 30:3, pp. 225–245, May/June 2009.

Merging of uncertain models

MERGE(OBJ,MOD,NEW MOD,TARGET NB,TARGET NA) updates uncertain submodel by new model. Up-
dated submodel is determined by its index or its name in variable MOD and new model is specified
by NEW MOD. This function supports so far only ARX models (IDARX or IDPOLY classes of
submodels).

Algorithm:

P. Trnka and V. Havlena, Overlapping models merging and interconnection for large-scale model
management. Proceedings of IEEE Multi-Conference on Systems and Control. 2010.

14 CHAPTER 1. CLASSES DEFINITION

Frequency uncertainty of ARX model

[MEAN,VAR] = FREQ UNCERT(OBJ,MOD,W) returns mean value and variation for model MOD on
frequencies W. This function supports so far only ARX models (IDARX or IDPOLY classes of
submodels).

Static Methods

Plot LS model structure

PLOT(MOD) plots structure of large scale model defined in MOD (LSmodel class object). The
structure is plotted as a graph, where vertexes are subsystems and edges indicate interaction
between subsystems. Small triangles at vertex edges indicate which subsystems have direct con-
nection to external inputs/outputs.

PLOT(MOD,’IO’) plots inputs and outputs as additional vertexes.

It is useful to call PLOT command as

MOD = PLOT(MOD)

as plot automatically computes graph vertex position and stores it for later use. The computation
can be time consuming for larger models (>50 vertexes).

1.2 WNmodel

WNmodel class is a child of large scale model LSmodel used for modeling of water (distribution)
networks.

Methods:

WNmodel - constructor creating empty model or importing model from

definition file

import_scheme - imports water network model from file

plot - overloaded plot function

eps - overloaded epsilon decomposition for water networks

Contents

• WNmodel Constructor
• Import water network scheme description from file.
• Display Object
• Epsilon Decomposition
• Compute Tanks Incidence Matrix
• Plot Water Network Model

1.2. WNMODEL 15

WNmodel Constructor

WNMODEL(FILENAME) constructs empty water network model or imports model from given defi-
nition file (see IMPORT SCHEME for description of file formats).

Import water network scheme description from file.

NOBJ = IMPORT SCHEME(OBJ,FILENAME) import water netwerk scheme from files. Water network
is defined by two files [filename].net and [filename].mat, where ’.net’ defines network structure and
’.net’ defines variables limits, prices, etc.

Structure definition file is a simple text file describing individual tanks and their interconnec-
tions by specifying signal names and directions.

The first line of each tank definition block specifies tank number and its name:

Tank##,<tank name>

or it can specify node with it number

Node##

Following lines are same for tanks and nodes:

d,<demand name>

s,<source name>

+,<outlet pump/valve name>,<destination tank name>

-,<inlet pump/valve name>,<source tank name>

Tank/node definition blocks can be separated by empty line(s). Empty lines and Matlab type
comments are ignored.

Variable definition file is standard Matlab MAT file with struct for every signal defining limits
by fields

.min ... min value

.max ... max value

.dmin ... min slope value

.dmax ... max slope value

.smin ... soft limit min value

.smax ... soft limit max value

.type ... signal type (’MV’,’MD’,’UD’,’MO’,’MV’,’X’)

Example (part of definition file):

Tank01,d450BEG

d,c450BEG

-,iBegues4,d369BEG

Tank02,d369BEG

d,c369BEG

+,iBegues4,d450BEG

-,iBegues3,d255BEG

16 CHAPTER 1. CLASSES DEFINITION

Node1

s,AportA

d,c82PAL

+,vPalleja70,Node2

+,vPapiolATLL,d110PAP

+,iPapiol2AGBAR,d110PAP

+,vFontSanta,d54REL

Node2

d,c70PAL

+,iPalleja4,d125PAL

-,vPalleja70,Node1

<End of example>

Display Object

DISPLAY shows basic information about water network model.

Epsilon Decomposition

EPS(OBJ,N TARGET) finds \epsilon decomposition of water network model after leafs condensation.
Decomposes the network to N TARGET subnetworks.

Compute Tanks Incidence Matrix

Incidence matrix I determines if there is direct connection between tanks i and j by ”1” on position
(i,j).

Plot Water Network Model

PLOT(WNmodel) plots structure of water network. It is useful to call PLOT command as

MOD = PLOT(MOD)

as plot automatically computes graph vertex position and stores it for later use. The computation
can be time consuming for larger models (>50 vertexes).

1.3 acg

The class Automatic Code Generation (ACG) creates a ready-to-use setup networked control
system simulation by generating a Simulink model based on TrueTime blocks and corresponding
configuration m-files. The Network model is specified by the number of actuators and sensors,
while controller and plant should be customized by the user fulfilling the respective subsystem.

1.3. ACG 17

Contents

• Class description
• Class costructor
• Code Generation Method
• Remove generated code

Class description

TrueTime

is a very powerful tool which can handle simulation of a variety of tasks, with a particular focus
on real-time implementation of controller and sensors/actuators codes. As a result of this plenty
of possibilities offered, the user needs to set-up a lot of features, some of which might be out of
scope for some needings.

This class permits to generate automatically all the configuration m-files needed to run a standard
networked-control simulation. The user is asked to simply set the number of sensors and actuators
that are desired to be in the network and a name for the Simulink model to be generated.

Then the code generation creates a Simulink model that contain two submodels, Plant and Con-
troller, that can be customized by the user according to personal needing.

Class costructor

USAGE

acg obj=ACG(Ns,Na,name)

• Ns = number of sensors in the network (Optional: default value=1);

• Na = number of actuators in the network (Optional: default value=1);

• name = name of the simulink model file (Optional: default value=’acg default’);

Code Generation Method

Generated the files required for performing a standard network-aware simulation using TrueTime

SensorsR init

SensS

SensR

msgRcvActR

Actuator Code

ActS init

18 CHAPTER 1. CLASSES DEFINITION

ActS

ActR

msgRcvActR

Configure the new system

Mux

Controller plant, Wireless

Add sensors blocks

Receiver

Sender

External Wireless

Internal Wireless

Controller and Plant

Rename actuator X1 with real number

Sender

External Wireless

Internal Wireless

Controller & plant

Actuators

Receiver

Sender

External Wireless

Internal Wireless

Controller and Plant

Connected previously added blocks

Remove generated code

Remove all generated code so as to clean the folder and permit new generation;

1.4. DECLMI 19

1.4 decLMI

This class provides a tool to synthesize a stabilizing decentralized linear controller for discrete-time
LTI systems. Functionalities are also given to achieve either robust or stochastic convergence to
the origin.

Contents

• Class description
• Output (read-only) properties
• Class constructor
• Centralized LMI computation
• Decentralized Ideal computation
• Decentralized Robust computation
• Decentralized Stochastic computation
• Private methods
• Static Methods

Class description

This work is based on the paper ”Synthesis of networked switching linear decentralized controllers”
by D. Barcelli, D. Bernardini and A. Bemporad, 49th IEEE Conference on Decision and Control,
2010.

The inputs for the class are

• the network state, i.e. the connection matrix of each node to each actuator;

• the matrices A and B modeling the controlled plant dynamics;

• the weights for the Riccati equation;

• the state and input constraints;

• the polytope mapping the initial state uncertainty (given as a set of vertices).

• the Markov chain modeling packet dropouts (needed for stochastic stability only)

All the methods solve an SDP problem and provide a feedback matrix gain K, and the matrix
solution of the Riccati equation P. The SDP problems are dependent on the type of stability
required. These methods are:

• Centralized: the network is assumed fully connected, all links are reliable and faultless (i.e.,
no packet dropouts are considered);

• Decentralized Ideal: the network is only partially connected, all links are reliable and fault-
less;

• Decentralized Robust: the network is only partially connected, and some links are faulty,
i.e., packets transmitted in those links can be lost. This method provides a decentralized
controller that guarantees stability for any possible configuration of packet drops, while
robustly fulfilling state and input constraints;

20 CHAPTER 1. CLASSES DEFINITION

• Decentralized Stochastic: the network is only partially connected, and some links are faulty,
i.e., packets transmitted in those links can be lost. Dropouts are modeled by a Markov chain
and closed-loop stability is guaranteed in the mean square sense. This solution is intended
to be less conservative with respect to the robust one.

Output (read-only) properties

Mc is a structure which defines the Markov chain. It includes:

• T : transition matrix;
• E : emission matrix.

The other properties are the output of the SDP solution:

• P : solution of Riccati equation;
• K : feedback matrix gain (i.e. u=K*x);
• g : γ in P = γQ−1 that is the minimized parameter in the SDP optimization;

Each of the previous properties is a structure with fields:

• ci : centralized ideal;
• di : decentralized ideal
• dl : decentralized lossy, i.e. robust;
• ds : decentralized stochastic. that are computed by corresponding methods.

Private properties

Class constructor

obj=decLMI(Net,A,B,Qx,Qu,X0,xmax,umax,Mc)

Net : matrix of row size equal to number of actuators and columns size equal to number of states.
Net(i,j) can be:

• 1 : if the state j is connected to actuator i by an ideal link;
• 0 : if there is no link between state j and actuator i;
• -1: if the state j is connected to actuator i by a lossy link;

A : state matrix of the LTI system modeling the plant;

B : input matrix of the LTI system modeling the plant;

Qx : state weight matrix of the Riccati equation;

Qu : input weight matrix of the Riccati equation;

X0 : set of vertices of the polytope that defines the uncertainty of the initial state condition;

xmax : Euclidean norm constraint on state;

umax : Euclidean norm constraint on input;

1.4. DECLMI 21

Mc : two-states Markov chain that models the probability of losing a packet. Must be a structure
with fields:

• d : array, where d(i) is the probability of losing a packet being in the i-th state of the Markov
chain;

• q : array, where q(i) is the probability of remaining in the i-th state of the Markov chain.

Computation of all possible Network configurations for all possible packet-loss configuration

Number of -1 in Net(i,:)

Total no. of -1 in Net

Centralized LMI computation

Computes the solution of the SDP problem assuming the network to be fully connected and each
link completely reliable. The goal is to give a reference for the performances that can be achieved
via the decentralized methods.

Formulate and solve an SDP for a centralized problem with no packet loss

Define SDP variables

Positive definiteness of Q

Stability constraint

Input constraints

State constraints

Ellipsoid definition for every vertex of X0

Decentralized Ideal computation

Computes the solution considering only present links, but assuming that all of them are reliable.
Basically does not account for miss-reception of packets containing mesurements.

Formulate and solve an SDP for a decentralization with no packet loss

Definition of zero components in K K(i,j) = 0 if state j is not available to compute input i

Definition of the structure of Y

Definition of the variable Y

Definition of the structure of Q

Definition of the variable Q

positive definiteness of Q

Stability constraint

22 CHAPTER 1. CLASSES DEFINITION

Input constraints

State constraints

Ellipsoid definition for every vertex of X0

Decentralized Robust computation

Computes a decentralized controller which provides stability and constraints satisfaction for any
possible occurrence of the packet dropouts.

Formulate and solve an SDP for a decentralization with packet-loss

In case there is no wireless links in a row, a fixed structure have to be applied: K0fix. It should
not be necessary to allocate all K0fix, but int his way it is useful to manage indices

There is no -1 in this line

Set cooherently line in Kofix

Define a memory structure that contains all possible configurations for each line of Net and its
implications in K0{i,j}, where i means the i-th line of K0 and j means one of the 2ˆnLi{i} possible
configurations

In order to exploit the exponetial structure, the set of all possible configurations is generated using
some recursive function that are not methods of the class.

Positive definiteness of Q

Ellipsoid definition for every vertex of X0

For all posssible configurations

Stability constraint

Input constraints

State constraints

Decentralized Stochastic computation

Computes a decentralized controller that exploits the available knowledge on the dropouts prob-
abiliy distributions. A two-states Markov chain is used to model the packet losses. Mean-square
stability is guaranteed.

Formulate and solve an SDP for a decentralization with packet loss and convergence in mean-
square

In case there are no wireless links in a row, a fixed structure have to be applied: K0fix.

There is no -1 in this line

Set cooherently Kofix’s line

1.5. DLINCON 23

Define a memory structure that contains all possible configurations for each line of Net and its
implications in K0{i,j}, where i means the i-th line of K0 and j means one of the 2ˆnLi{i} possible
configurations

For all possible states of the Markov chain

For all possible network configurations in that Markov chain state

Total number of lossy links

Positive definiteness of Q in state 1

Positive definiteness of Q in state 2

Ellipsoid definition for every vertex of X0

Ellipsoid definition for every vertex of X0

Define the constraint as [Qj [CC’ CC1’];[CC;CC1] DD]

Implement hard constraints

Private methods

Not described below since their use is depicted in the code settion where the method is called.

Static Methods

1.5 dlincon

The class Decentralized LINear CONstrained (dlincon) provide the used with an extension of the
object lincon, which is available with the Hybrid toolbox (by A. Bemporad) toward decentralized
control.

Contents

• Class description
• Properties
• Class constructor
• Control computation method
• Stability test around the origin

Class description

Starting with an user defined decentralization, the toolbox automatically creates the corresponding
set of decentralized lincon controllers of appropriate dimension. The user is requested to provide a
starting configuration for the centralized controller (using the same parameters as in in lincon) and

24 CHAPTER 1. CLASSES DEFINITION

that will be readapted, in proper dimension, to each subcontroller. Moreover each subcontroller
can be customized according to needing as it is a lincon class instance.

Methods are available for three kinds of control action computation:

• global : centralized controller;

• Dglobal: run all DMPCs and assemble the components to return the complete set of inputs;

• i : run the i-th controller and return its results only;

Both regulator and tracking modes are supported, however the latter is realized by means of
coordinates shift, accordingly to ”Barcelli and Bemporad ’Decentralized Model Predictive Control
of Dynamically-Coupled Linear Systems: Tracking under Packet Loss’”. Update covering the
normal tracking mode is matter of actual development.

Properties

decent : Decentralization structure: is supposed to an array of structure containing fileds:

• x (states of the subsystem);

• y (outputs of the subsystem);

• u (inputs of the subsystem);

• applied (inputs effectively applied, no overlap is allowed). each containing the array of indices
to be included in the subsystem.

• Ts (subsystem sample times); [optional: if not specified all subsystem have same sample tie
of the plant]

M : number of subsystem

W : selection matrix for states

Z : selection matrix for inputs

G : selection matrix for outputs

APP : selection matrix for applied inputs

Zr : state coordinate shift

Vr : input coordinate shift

sub sys : cell array of subcontrollers models

ccon : centralized controller

dcon : cell array of lincon objects

var bounds : 1 if bounds are specified online by the user, 0 else

type : ’reg’ or ’track’

1.5. DLINCON 25

Class constructor

dl = dlincon(model,type,cost,interval,limits,yzerocon,... decent,varbounds);

• model : centralized LTI model of the plant

• type : ’reg’ for regulator or ’track’ for tracking

• cost : structure with state and input matrices weights (see lincon for more details);

• interval : structure with fields N and Nu, prediction and simulation horizons respectively
(see lincon for more details);

• limits : structure with bounds on states and inputs (see lincon for more details);

• yzerocon : if 1 constraints are also enforced at the starting instant (see lincon for more
details);

• decent : decentralization structure, see Properties for a more detailed help;

• varbounds : if 1 state are added to handle variant bounds specified by the user online to be
enforced.

• ctrlTs : controller sample time (optional)

Control computation method

u = dl.Deval(type,xk,r) or u = Deval(dl,type,xk,r) where dl is a dlincon obj

• type: global : centralized controller; Dglobal: run all DMPCs and assemble the compo-
nents to output the complete set of inputs; i : run the i-th controller and outputs its results
only;

• xk : state measurements of estimations (must be coherent with state dimension

• r : vector of references for the outputs, ignored if type=’reg’.

Obtain i-th subsystem state

Compute i-th sbsystem’s inputs

Apply only the ones which deserve to be

Controller to be evaluated

Obtain i-th subsystem state

Compute the inputs of the i-th subsystem

Apply only the ones which deserve to be

26 CHAPTER 1. CLASSES DEFINITION

Stability test around the origin

stability test(dl,range,cost)

Test described in Barcelli and Bemporad, NECSYS09, returning true or false.

Create explicit controllers ranges

Create explicit controllers

Computational optimization

Check the region

We consider the stability test in an area around the origin for which the controllers are linear (not
affine -> Gs=0)

Our method stability test

Lyapunov equation solution computation

Global optimal input

Local optimal inputs

Maximum length of missing packet sample times

Compute sum(WWQWW)

Positive definitiveness of result is to be checked

Since the reference may be unknown at this stage, the offset cannot be computed

Cost

Limits

Only those input that will really be applied need to be constrained

Add constant states umin,umax

Set y2=umin(t)-u(t), y3=umax(t)-u(t)

Limit

Check existence of related fields

Change ymin and ymax if required

Output weight

Input increment weight

Output weight

Input increment weight

Hard constraints

1.6. EAMPC 27

Input constraints horizon k=0,...,Ncu

Output constraints horizon k=1,...,Ncy

Check also output constraints for k=0

Add constant states umin,umax

Set y2=umin(t)-u(t), y3=umax(t)-u(t)

Since the limits will be given online, the fixed limits should be removed

Change ymin and ymax if required

Output weight

Input increment weight

Input constraints horizon k=0,...,Ncu

Output constraints horizon k=1,...,Ncy

Check also output constraints for k=0

All elements in decent have to be >0 and < number of corresponding elements in system (because
they are indices)

Flag to determine if decentralization is wrong

Indices have to array columns

Indices have to >0 and <= #corresponding element

Bounds references

1.6 eampc

This class provides an implementation of an explicit MPC controller, where communications be-
tween controller and sensor nodes are subject to an energy-aware policy intended to lower the
number of transmissions and, utlimately, save sensor nodes battery.

by D. Bernardini, 2010.

Contents

• Class description
• Public properties
• Output (read-only) properties
• Class constructor
• init sim
• send predictions
• get measurements
• get input
• build mpc

28 CHAPTER 1. CLASSES DEFINITION

Class description

This class is based on the papers:

• D. Bernardini and A. Bemporad, “Energy-aware robust model predictive control based on
wireless sensor feedback,” in Proc. 47th IEEE Conf. on Decision and Control, Cancun,
Mexico, 2008, pp. 3342–3347.

• D. Bernardini and A. Bemporad, “Energy-aware robust model predictive control with feed-
back from multiple noisy wireless sensors,” 10th European Control Conference, Budapest,
Hungary, 2009, pp. 4308–4313.

The input arguments to create an EAMPC object are:

• the A and B matrices of the controlled plant model, which is a discrete-time LTI system.

• the WSN configuration, namely the number of sensor nodes to use, the thresholds for the
transmission policy, and the length of the state predictions buffer.

• the desired constraints on inputs and outputs.

• the weight matrices and other parameters which define the MPC objective function.

The overall control system is assumed to have the following configuration. A number of wireless
sensor nodes collect noisy state measurements for disturbance rejection, compute an estimated
state value, and transmi this estimation to the controller according to a transmission policy. This
policy is based on a threshold logic. Namely, at every time step the estimated state value Ymean

is transmitted to the controller if and only if there exists i such that

|Ymean(i) - Xhat(i)| ≥ th(i)

where th is a vector of user-defined thresholds, and Xhat is the predicted states buffer, which is
precomputed by the controller and transmitted beforehand to the sensor nodes. Updated state
predictions are computed and transmitted to the sensors every time new measurements are received
by the controller. It is assumed that every sensor node collects a (noisy) measurement of the
complete state vector, and that the energy cost of a (short-range) transmission between sensors is
negligible with respect to a (long-range) transmission between sensors and controller.

Public properties

Net : specifies the network configuration. It is a structure with fields

• nodes : number of wireless sensor nodes used.
• th : threshold vector for measurement transmission policy. Note: if th is a vector with

all zero entries, then a standard MPC control law is implemented, where at every time step
measurements are sent to controller regardless to the threshold-based transmission policy.

• Ne : estimation horizon for state predictions computation.

1.6. EAMPC 29

Output (read-only) properties

nu : number of inputs of the controlled system.

ny : number of outputs of the controlled system.

Plant : controlled plant, modeled as a discrete-time LTI system. It is a structure with fields

• A : state matrix (ny x ny).
• B : input matrix (ny x nu).

Net : network configuration. It is a structure with fields

• nodes : number of wireless sensor nodes used.
• th : threshold vector for measurement transmission policy. Note: if th is a vector with

all zero entries, then a standard MPC control law is implemented, where at every time step
measurements are sent to controller regardless to the threshold-based transmission policy.

• Ne : estimation horizon for state predictions computation.

Limits : element-wise constraints on outputs and inputs. It is a structure with fields

• ymin : lower bounds on output (ny x 1).
• ymax : upper bounds on output (ny x 1).
• umin : lower bounds on input (nu x 1).
• umax : upper bounds on input (nu x 1).
• dumin : lower bounds on input rate (nu x 1). Optional.
• dumax : upper bounds on input rate (nu x 1). Optional.

Weights : weight matrices to be used in the MPC objective function. It is a structure with fields

• Qu : input weight (nu x nu).
• Qy : output weight (ny x ny).
• Qn : terminal state weight (ny x ny). Optional.
• rho : positive weight for soft output constraints (1 x 1). Optional.

Params : other parameters for the MPC problem design. It is a structure with fields

• pnorm : norm used in the MPC objective function.
• N : prediction horizon.
• Nc : control horizon. Optional.

Ctrl : explicit MPC controller obtained with MPT Toolbox. See mpt control for more details.

Sim : Data used for simulations. It is a structure with fields

• Y : set of current measurements.
• Ymean : estimated output value, taken as the mean value of Y.
• Xhat : buffer of predicted state values.
• tx : records transmissions from sensor nodes to controller.
• rx : records transmissions from controller to sensor nodes.

30 CHAPTER 1. CLASSES DEFINITION

Class constructor

obj = eampc(Plant,Net,Limits,Weights,Params)

Plant : controlled plant, modeled as a discrete-time LTI system. It is a structure with fields

• A : state matrix (ny x ny). Mandatory.

• B : input matrix (ny x nu). Mandatory.

Limits : element-wise constraints on outputs and inputs. It is a structure with fields

• ymin : lower bounds on output (ny x 1). Mandatory.

• ymax : upper bounds on output (ny x 1). Mandatory.

• umin : lower bounds on input (nu x 1). Mandatory.

• umax : upper bounds on input (nu x 1). Mandatory.

• dumin : lower bounds on input rate (nu x 1). Optional (default: -Inf).

• dumax : upper bounds on input rate (nu x 1). Optional (default: Inf).

Weights : weight matrices to be used in the MPC objective function. It is a structure with fields

• Qu : input weight (nu x nu). Mandatory.

• Qy : output weight (ny x ny). Mandatory.

• Qn : terminal state weight (ny x ny). Optional (default: Qy).

• rho : positive weight for soft output constraints (1 x 1). Optional (default: Inf).

Params : other parameters for the MPC problem design. It is a structure with fields

• pnorm : norm used in the MPC objective function. It can be 1, 2, Inf. Mandatory.

• N : prediction horizon. Mandatory.

• Nc : control horizon. Optional (default: N).

init sim

Initializes EAMPC object for simulations. This method must be called before running a new
simulation.

Usage:

obj = init sim(obj)

where

obj : EAMPC object. Mandatory.

1.6. EAMPC 31

send predictions

Checks if an updated prediction buffer needs to be provided to the sensor nodes. In this case,
a sequence of obj.Net.Ne future state predictions are computed and transmitted to the sensor
nodes. Note: if all the components of obj.Net.th are zeros, no transmission takes place.

Usage:

obj = send predictions(obj,Xk,Uprev)

where

obj : EAMPC object. Mandatory.

Xk : current estimated state value. Mandatory.

Uprev : previous input value. Mandatory if input rate constraints are imposed, otherwise ignored.

get measurements

Given the actual state X and the output noise V, provides to the controller an estimation of the state
vector. Measurements from all sensor nodes are gathered (assuming all the state components are
measured by each node) and the average output Ymean is computed. Then, Ymean is transmitted
to the controller if and only if there exists i such that

|Ymean(i) - Xhat(i)| ≥ th(i)

Usage:

[Xestim,obj] = get measurements(obj,X,V)

where

obj : EAMPC object. Mandatory.

X : state value (ny x 1). Mandatory.

V : output noise matrix (ny x no. of nodes). Mandatory.

Xestim : estimated state value.

get input

Computes MPC control move given a controller and an initial state.

Usage:

Uopt = get input(obj,X,Uprev)

where

obj : EAMPC object. Mandatory.

32 CHAPTER 1. CLASSES DEFINITION

X : initial state. Mandatory.

Uprev : previous contrl move. Mandatory if input rate constraints are imposed, otherwise ignored.

build mpc

Computes the explicit solution of the MPC problem:

J(x(0)) = min
u
‖QNx(N)‖p +

N−1∑
j=0

‖Qyy(j)‖p + ‖Quu(j)‖p

subject to x(j) ∈ X, u(j) ∈ U

for every x(0) ∈ X. Assume full state-feedback.

Usage:

obj = build MPC(obj)

where

obj : EAMPC object. Mandatory.

1.7 himpc

This class implements the hierarchical MPC control paradigm presented in Barcelli, Bemporad,

Ripaccioli, CDC10 and decentralized extension (Barcelli, Bemporad, Ripaccioli, IFAC11.

Contents

• Class description

• Properties

• Constructor

• MOARS determination for each subsystem

• Plot of all MOARS

• Compute DeltaR and DeltaR/N for each sub-model

• Plot DeltaR and DeltaR/N for each sub-model

• Static Methods

1.7. HIMPC 33

Class description

In this work we propose a decentralized hierarchical multi-rate control design approach to lin-
ear systems subject to linear constraints on input and output variables. At the lower level, a
set of linear controllers stabilize the open-loop process without considering the constraints. A
higher-layer, composed of a set of independent controllers, commands reference signals at a lower
sampling frequency so as to enforce linear constraints on the variables of the process. By optimally
constraining the magnitude and the rate of variation of the reference signals applied to the lower
control layer, we provide quantitative criteria for selecting the ratio between the sampling rates
of the upper and lower layers to preserve closed-loop stability without violating the prescribed
constraints.

The HiMPC class has been developed to automatically generate the proposed multi-layer control
architecture, which structure is shown in the following figure.

r1

r2

Upper Control Layerdesired

reference p(t)

output

constraint

optional

(partial)

state

feedback

HiMPC1

HiMPC2

HiMPCn

..
.

@TH
1

@TH
2

@TH
m

rm

Process

C1

C2

Cm

u1

u2

Lower control layer

..
.

u(t)

y(t)

x(t)

@TL

um

x1

x2

xm

The layout of the controller is composed by two levels in a hierarchical structure which, in turn,
are composed by a set of independent and decentralized sub-controllers. We assume that the
stability of the process is guaranteed by the action of the lower control layer, which runs at the
same sample time of the plant. Therefore is required that the LTI model of the plant in closed-loop
with the set of lower layer controllers, given by the user, is stable. Future update to the toolbox
will allow the user to automatically generate the stabilizing lower layer given the plant model and
the desired decentralization, for example though LMI (See corresponding section of the toolbox).
The decentralization of the inner loop controller, i.e. the sets of input, states and outputs assigned
to each sub-controllers is one of the strenghts of the proposed approach. The decentralized design
has been exploited together with the LTI model of the plant and the constraints on inputs and
states to compute the polytopic sets of each submodel which is the bound the mutual influence of
the different subsystems on each other. This result is fundamental because allows to treat each
subsystem independently, since for all of them a single Maximal Output Admissible Set (MOAS) is
computed [1]. The independece of the MOASs is guaranteed by taking into account the uncertainty
polytope, which bounds the interaction with the others, in the invariant set computation.

Moreover, the MOAS determination is related to the restriction of the admissible output set, which
is a polytope tightening. The contraction factor, ∆k, is the main tuning knob of the approach:
the smaller the components of ∆y, the larger is the set of admissible set points, but the smaller
will be the admissible reference increments to maintain tracking errors within the admissible error
set.

Such control architecture is then extended to allow a decentralized superviros which is then capa-
ble of speedup the sampling frequencies in those spatial regiogion presenting less strict challanges.
Cooperativeness is avoided to guarantee complete independece, a clear advantage from communi-

34 CHAPTER 1. CLASSES DEFINITION

cation and parallelism viewpoints. So as to achieve this, inter-subsystem interractions are treated
as disturbances, leading to consider Maximal Output Admissible Robust Set (MOARS) instead
of MOAS.

Then for each subsystem, the maximum element-wise reference variation such that for any admis-
sible state and interaction, the system state will be in a MOAS at the next execution of higher
level controller. It is evident that such variation is a function of the ratio between the two layers
sample time. The constraint computed in that way bounds the reference variation that is pos-
sible to give to the sub-controllers, while preserving the closed-loop stability and enforcing the
constraints. Such task is performed by the higher level controllers.

Finally the maximum element-wise reference variation for each subsystem is computed. The
maximum element-wise reference variation is defined as the smallest change of reference vector
that can be applied to the closed-loop system of the lower layer controllers with the plant such
that, starting from an invariant set, the state vector lands outside a new invariant set a given
number of steps. Or, in other words, for all reference changes the closed-loop system is such that,
starting from an invariant set, the state vector always arrives into a new invariant set after given
number of steps.

[1] Kolmanovsky, I. and Gilbert, E.G., Maximal output admissible sets for discrete-time systems
with disturbance inputs, 14th American Control Conference 1995, Seattle, WA

Properties

DeltaK : Array of the same size of the constraints that determines their tightening

Xcon : Structure of constraints with fields

• min;
• max;

dec : Decentralization structure, is a cell array of structures each of which with fileds:

• x (states of the subsystem);
• y (outputs of the subsystem);
• u (inputs of the subsystem);
• applied (inputs effectively applied, no overlap is allowed). i-th structure contains the indices

of the respective elements that are currently included in the i-th subsystem

model : ss object with the plant LTI model

comp : Cell array of the state indices that the do not belong to the i-th subsystem

coupledCons: Cell array of non element-wise state constraints with fields H and K to be appended
to the constraint polytope of the i-th subsystem

Constructor

obj = HiMPC(model,dec,Ycon,DeltaK,Xcon,coupledCons)

model : ss object with the plant LTI model

1.7. HIMPC 35

dec : Decentralization structure: is supposed to an array of structure containing fileds:

• x (states of the subsystem);
• y (outputs of the subsystem);
• u (inputs of the subsystem);
• applied (inputs effectively applied, no overlap is allowed). each containing the array of indices

to be included in the subsystem.

DeltaK : Array of the same size of the constraints that determines their tightening

Xcon : state bounds structure eight fields min and max

coupledCons: Cell array of non element-wise state constraints with fields H and K to be appended
to the constraint polytope of the corresponding subsystem

MOARS determination for each subsystem

Compute the MOARS of all the submodels

Optinal parameter, the ray of the unit ball used to avoid empty polytopes (deault 1e-6)

Computes the MOARS

Inv set inequatily description

Plot of all MOARS

Plot a figure with as many subfigures as the submodels each showing in red the MOAS with no
disturbance and in blue the real MOARS.

Compute DeltaR and DeltaR/N for each sub-model

Computes the maximum reference variation of each sub-model as a function of the sample time
ratio, also with sample time normalization. No parameter is required.

For each sub-model

Variable declaration

Continuos

Binary

DC gain

Constraints

Epsilon = max(r1-r2)

x(0) in omega(r1)

36 CHAPTER 1. CLASSES DEFINITION

xr2

Big M

xN is the state at next sample time of the hierarchical, that is after Nh samples of the fast model

xN NOT in omega(r2)

big M

One constraint must be violated in xN

r1,r2 in (Ho,Ko) polytope

each disturbance realization in Pnoise

Solver setup

Plot DeltaR and DeltaR/N for each sub-model

Plot both ∆r(N) and the ratio ∆r(N)/N over the sample times ratio N.

Static Methods

1.8 ncs

• Constructor Function
• Class Functions
• Restrictions on setting the variable type

Constructor Function

Class Functions

Restrictions on setting the variable type

Chapter 2

Examples

2.1 LSmodel

Demonstration of Large Scale Model Class LSmodel

This script demonstrates the use of LSmodel class for modeling and model management of Large
Scale (LS) systems. The first part shows definition of LSmodel for multiple boilers connected to
a single header. The second part is demonstration of LSmodel methods on randomly generated
model with 15 submodels.

Contents

• Submodels Definition

• Construction of LSmodel

• Plot model structure

• Random LS model with 15 sub-models

• Structure preserving model order reduction

• ”On-line” Model changes

• Submodels grouping

• Time domain models merging

• Overloaded functions

• Impulse response

• Step response

• Bode frequency response

• Nyquist frequency response

• Pole-zero map

• Pole-zero map for I/O pairs

Submodels Definition

This section defines models of individual boilers and header. These models will be used to create
LS model in the next section. The structure of the model is in following figure.

37

38 CHAPTER 2. EXAMPLES

t t

t t

% --- Boiler parameters ------------------------------

n_boilers = 5; % number of boilers (1-5)

T = [50 100 150 200 250]; % fuel -> steam time constants [s]

Ks = 10; % amount of steam [t/hrs] from unit of

% fuel [t/hrs]

V = [300 500 700 800 600]; % boiler volumes [m3] (1/V ~ pressure

% integration constant)

K = [100 130 150 130 140]; % boiler->header pipe "conductivity",

% =flow/(pressure difference) [t/hrs/bar]

Kh = 1; % "conductivity" to turbine

Vh = 2e3; % header volume [m3]

% --- Boiler models ----------------------------------

% Inputs:

% FF ... fuel flow - same value flows to all boilers [t/hrs]

% ph ... header pressure [MPa]

% --

% States:

% GS ... generated steam [t/hrs]

% pb ... boiler pressure [MPa]

% --

% Outputs:

% SF ... overall steam flow from all boilers [t/hrs]

% pb ... boiler pressure [MPa]

% --

for i=1:n_boilers,

A = [-1/T(i) , 0

1/V(i) , -K(i)/V(i)];

B = [Ks/T(i) , 0

0 , K(i)/V(i)];

C = [0 , K(i)

0 , 1];

D = [0 , -K(i)

0 , 0];

M{i} = ss(A,B,C,D); % models of individual boilers

M{i}.InputName = { ’FF’ , ’ph’ };

M{i}.StateName = { [’GS’ num2str(i)] , [’pb’ num2str(i)] };

M{i}.OutputName = { [’SF’ num2str(i)] , [’pb’ num2str(i)] };

%M{i}.Name = [’B’ num2str(i)];

M{i}.Name = [’Boiler ’ num2str(i)];

2.1. LSMODEL 39

end

% --- Header model -----------------------------------

% Inputs:

% SF ... total steam flow from boilers [t/hrs]

% SD ... steam demand from (from turbine) [t/hrs]

% --

% Outputs:

% ph ... header pressure [MPa]

% --

A = -Kh/Vh;

B = [1/Vh -1/Vh];

C = 1;

D = 0;

M{n_boilers+1} = ss(A,B,C,D);

M{n_boilers+1}.InputName = { ’SF’ , ’SD’ };

M{n_boilers+1}.StateName = { ’ph’ };

M{n_boilers+1}.OutputName = { ’ph’ };

%M{n_boilers+1}.Name = ’H’;

M{n_boilers+1}.Name = ’Header’;

% --- Steam flow summing block -----------------------

% sums steam flows from boilers to header

sum1 = sumblk(’SF’,’SF1’,’SF2’,’SF3’,’SF4’,’SF5’);

%sum1.Name = ’SFsum’;

sum1.Name = ’Steam Flow Summator’;

Construction of LSmodel

LS model is contructed by specifying submodels, summators and a list of external inputs and
outputs. Internal connections are automatically created by matching input/output names

mod = LSmodel(M,sum1,{’FF’,’SD’},{’ph’,’SF’})

Large scale model (total order=11, 6 subsystem(s), 1 summator(s)):

--- Subsystems -----------

M1: 2 inputs, 2 outputs, order=2, name="Boiler 1"

M2: 2 inputs, 2 outputs, order=2, name="Boiler 2"

M3: 2 inputs, 2 outputs, order=2, name="Boiler 3"

M4: 2 inputs, 2 outputs, order=2, name="Boiler 4"

M5: 2 inputs, 2 outputs, order=2, name="Boiler 5"

M6: 2 inputs, 1 outputs, order=1, name="Header"

--- Summators -----------------

Sum1: 5 inputs, name = "Steam Flow Summator"

--- External Inputs -----------

IN01: FF X

IN02: SD X

--- External Outputs ----------

OUT01: ph X

OUT02: SF X

40 CHAPTER 2. EXAMPLES

Constructor function is compatible with standard CONNECT function, where the same model
would be defined as (connect does not accept cell array of models)

mod_connect = connect(M{1},M{2},M{3},M{4},M{5},M{6},sum1, ...

{’FF’,’SD’}, ...

{’ph’,’SF’});

It is also possible to construct the model by using numeric indexing of inputs and outputs. How-
ever, name based signal referencing will be prefered as numeric indexing may be confusing for LS
systems.

inputs = { [1 3 5] , 8 }; % extended notation of standard connect

Q = [2 7 0 0

4 7 0 0

6 7 0 0

7 1 3 5];

outputs = { 7 , [1 3 5] };

inputs = { [1 3 5 7 9], 12 };

Q = [2 11 0 0 0 0

4 11 0 0 0 0

6 11 0 0 0 0

8 11 0 0 0 0

10 11 0 0 0 0

11 1 3 5 7 9];

outputs = { 11 , [1 3 5 7 9] };

mod2 = LSmodel(M{1},M{2},M{3},M{4},M{5},M{6},Q,inputs,outputs);

Plot model structure

Plots structure of large scale model as a graph, where vertexes are subsystems and edges indicate
interaction between subsystems.

figure(10); clf; subfigure(10,3,3,[1 5]); % publish

subplot(121);

plot(mod);

title(’\bfModel Structure’);

subplot(122);

plot(mod,’io’);

title(’\bfModel Structure with I/O’);

Computing vertex positions... Done.

Computing vertex positions... Done.

2.1. LSMODEL 41

M1

M2

M3

M4

M5

M6

Model Structure

M1

M2

M3

M4

M5

M6

u1

u2

y1

y2

Model Structure with I/O

Random LS model with 15 sub-models

Previous model is rather small. Larger model will be randomly generated by using command RLS

parameterized by number of sub-models, maximum sub-model order, number of external outputs
and number of external inputs.

seed=963;rand(’seed’,seed);randn(’seed’,seed); % to get stable CL model

mod = rls(15,3,3,3)

clf;

plot(mod,’io’);

title(’\bfModel Structure’);

Large scale model (total order=35, 15 subsystem(s), 8 summator(s)):

--- Subsystems -----------

M1: 1 inputs, 1 outputs, order=3, name="subs1"

M2: 1 inputs, 1 outputs, order=3, name="subs2"

M3: 1 inputs, 2 outputs, order=3, name="subs3"

M4: 2 inputs, 2 outputs, order=1, name="subs4"

M5: 2 inputs, 1 outputs, order=1, name="subs5"

M6: 1 inputs, 1 outputs, order=2, name="subs6"

M7: 1 inputs, 1 outputs, order=2, name="subs7"

M8: 2 inputs, 2 outputs, order=2, name="subs8"

M9: 2 inputs, 2 outputs, order=2, name="subs9"

M10: 1 inputs, 1 outputs, order=3, name="subs10"

M11: 2 inputs, 2 outputs, order=1, name="subs11"

M12: 1 inputs, 2 outputs, order=3, name="subs12"

M13: 1 inputs, 2 outputs, order=3, name="subs13"

M14: 2 inputs, 2 outputs, order=3, name="subs14"

M15: 1 inputs, 1 outputs, order=3, name="subs15"

--- Summators -----------------

Sum1: 3 inputs, name = "S1"

Sum2: 4 inputs, name = "S2"

Sum3: 3 inputs, name = "S3"

Sum4: 5 inputs, name = "S4"

Sum5: 3 inputs, name = "S5"

42 CHAPTER 2. EXAMPLES

Sum6: 3 inputs, name = "S6"

Sum7: 5 inputs, name = "S7"

Sum8: 5 inputs, name = "S8"

--- External Inputs -----------

IN01: s24 X

IN02: s25 X

IN03: s26 X

--- External Outputs ----------

OUT01: s7 X

OUT02: s8 X

OUT03: s13 X

Computing vertex positions... Done.

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

u1

u2

u3

y1

y2

y3

Model Structure

2.1. LSMODEL 43

Structure preserving model order reduction

Standard model order reduction destroys model internal structure. Structure preserving model
order reduction reduces order of individual sub-models to achieve minimum mismatch with original
model from external input/output point of view. Structured singular numbers are plotted to show
which sub-models are reduced in order to achieve target global model order.

figure(2);clf;

mod_r20=mod.struct_red(20); % model reduced to 20th order

mod_r3=mod.struct_red(3); % model reduced to 3rd order

% Compare step responses of original and reduced order models

figure(1);

clf;step(mod,30);hold all;

step(mod_r20,’r--’,30);

step(mod_r3,’g--’,30);

legend([’Original n=’ num2str(mod.n)],...

[’Reduced n=’ num2str(mod_r20.n)],...

[’Reduced n=’ num2str(mod_r3.n)]);

5 10 15 20 25 30 35
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

Sorted Singular Numbers

M

1
 − "subs1"

M
2
 − "subs2"

M
3
 − "subs3"

M
4
 − "subs4"

M
5
 − "subs5"

M
6
 − "subs6"

M
7
 − "subs7"

M
8
 − "subs8"

M
9
 − "subs9"

M
10

 − "subs10"

M
11

 − "subs11"

M
12

 − "subs12"

M
13

 − "subs13"

M
14

 − "subs14"

M
15

 − "subs15"

threshold

44 CHAPTER 2. EXAMPLES

−1

0

1

From: s24

T
o
:
s
7

−0.5

0

0.5

1

1.5

T
o
:
s
8

0 10 20 30
−0.8

−0.6

−0.4

−0.2

0

0.2

T
o
:
s
1
3

From: s25

0 10 20 30

From: s26

0 10 20 30

Step Response

Time (sec)

A
m

p
lit

u
d
e

Original n=35

Reduced n=20

Reduced n=3

”On-line” Model changes

Removing submodel(s)

Remove subsystems, which have zero order after structured reduction (just for demonstration of
large scale model manipulations).

ind = find(mod_r20.orders==0);

removed_models = mod.M(ind);

modX = mod.rem_mod(ind);

figure(10); clf;

subplot(121);plot(mod,’io’);

title(’\bfOriginal Model’);

subplot(122);plot(modX,’io’);

title(’\bfReduced Model without zero order subsystems’);

Computing vertex positions... Done.

Computing vertex positions... Done.

2.1. LSMODEL 45

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

u1

u2

u3

y1

y2

y3

Original Model

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

u1

u2

u3

y1

y2

y3

Reduced Model without zero order subsystems

Adding submodel(s)

modX = modX.add_mod(removed_models);

cla; plot(modX,’io’);

title(’\bfRestored Model (different numbering)’);

Computing vertex positions... Done.

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

u1

u2

u3

y1

y2

y3

Original Model

Restored Model (different numbering)

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

u1

u2

u3

y1

y2

y3

Removing external input

modX = modX.rem_ext_inp(’s24’)

cla; plot(modX,’io’);

title(’\bfExternal Input Removed’);

Large scale model (total order=35, 15 subsystem(s), 8 summator(s)):

--- Subsystems -----------

M1: 1 inputs, 1 outputs, order=3, name="subs1"

46 CHAPTER 2. EXAMPLES

M2: 2 inputs, 2 outputs, order=1, name="subs4"

M3: 2 inputs, 1 outputs, order=1, name="subs5"

M4: 1 inputs, 1 outputs, order=2, name="subs6"

M5: 2 inputs, 2 outputs, order=2, name="subs9"

M6: 1 inputs, 1 outputs, order=3, name="subs10"

M7: 2 inputs, 2 outputs, order=1, name="subs11"

M8: 1 inputs, 2 outputs, order=3, name="subs12"

M9: 2 inputs, 2 outputs, order=3, name="subs14"

M10: 1 inputs, 1 outputs, order=3, name="subs15"

M11: 1 inputs, 1 outputs, order=3, name="subs2"

M12: 1 inputs, 2 outputs, order=3, name="subs3"

M13: 1 inputs, 1 outputs, order=2, name="subs7"

M14: 2 inputs, 2 outputs, order=2, name="subs8"

M15: 1 inputs, 2 outputs, order=3, name="subs13"

--- Summators -----------------

Sum1: 3 inputs, name = "S1"

Sum2: 4 inputs, name = "S2"

Sum3: 3 inputs, name = "S3"

Sum4: 5 inputs, name = "S4"

Sum5: 3 inputs, name = "S5"

Sum6: 3 inputs, name = "S6"

Sum7: 5 inputs, name = "S7"

Sum8: 5 inputs, name = "S8"

--- External Inputs -----------

IN01: s25 X

IN02: s26 X

--- External Outputs ----------

OUT01: s7 X

OUT02: s8 X

OUT03: s13 X

Computing vertex positions... Done.

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

u1

u2

u3

y1

y2

y3

Original Model

External Input Removed

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15 u1

u2

y1

y2

y3

Adding external input

2.1. LSMODEL 47

modX = modX.add_ext_inp(’s24’)

cla; plot(modX,’io’);

title(’\bfExternal Input Added’);

Large scale model (total order=35, 15 subsystem(s), 8 summator(s)):

--- Subsystems -----------

M1: 1 inputs, 1 outputs, order=3, name="subs1"

M2: 2 inputs, 2 outputs, order=1, name="subs4"

M3: 2 inputs, 1 outputs, order=1, name="subs5"

M4: 1 inputs, 1 outputs, order=2, name="subs6"

M5: 2 inputs, 2 outputs, order=2, name="subs9"

M6: 1 inputs, 1 outputs, order=3, name="subs10"

M7: 2 inputs, 2 outputs, order=1, name="subs11"

M8: 1 inputs, 2 outputs, order=3, name="subs12"

M9: 2 inputs, 2 outputs, order=3, name="subs14"

M10: 1 inputs, 1 outputs, order=3, name="subs15"

M11: 1 inputs, 1 outputs, order=3, name="subs2"

M12: 1 inputs, 2 outputs, order=3, name="subs3"

M13: 1 inputs, 1 outputs, order=2, name="subs7"

M14: 2 inputs, 2 outputs, order=2, name="subs8"

M15: 1 inputs, 2 outputs, order=3, name="subs13"

--- Summators -----------------

Sum1: 3 inputs, name = "S1"

Sum2: 4 inputs, name = "S2"

Sum3: 3 inputs, name = "S3"

Sum4: 5 inputs, name = "S4"

Sum5: 3 inputs, name = "S5"

Sum6: 3 inputs, name = "S6"

Sum7: 5 inputs, name = "S7"

Sum8: 5 inputs, name = "S8"

--- External Inputs -----------

IN01: s25 X

IN02: s26 X

IN03: s24 X

--- External Outputs ----------

OUT01: s7 X

OUT02: s8 X

OUT03: s13 X

Computing vertex positions... Done.

48 CHAPTER 2. EXAMPLES

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

u1

u2

u3

y1

y2

y3

Original Model External Input Added

M1

M2

M3

M4

M5

M6

M7
M8

M9

M10

M11

M12

M13

M14

M15

u1

u2

u3

y1

y2

y3

Removing external output

modX = modX.rem_ext_out(’s8’)

cla; plot(modX,’io’);

title(’\bfExternal Output Removed’);

Large scale model (total order=35, 15 subsystem(s), 8 summator(s)):

--- Subsystems -----------

M1: 1 inputs, 1 outputs, order=3, name="subs1"

M2: 2 inputs, 2 outputs, order=1, name="subs4"

M3: 2 inputs, 1 outputs, order=1, name="subs5"

M4: 1 inputs, 1 outputs, order=2, name="subs6"

M5: 2 inputs, 2 outputs, order=2, name="subs9"

M6: 1 inputs, 1 outputs, order=3, name="subs10"

M7: 2 inputs, 2 outputs, order=1, name="subs11"

M8: 1 inputs, 2 outputs, order=3, name="subs12"

M9: 2 inputs, 2 outputs, order=3, name="subs14"

M10: 1 inputs, 1 outputs, order=3, name="subs15"

M11: 1 inputs, 1 outputs, order=3, name="subs2"

M12: 1 inputs, 2 outputs, order=3, name="subs3"

M13: 1 inputs, 1 outputs, order=2, name="subs7"

M14: 2 inputs, 2 outputs, order=2, name="subs8"

M15: 1 inputs, 2 outputs, order=3, name="subs13"

--- Summators -----------------

Sum1: 3 inputs, name = "S1"

Sum2: 4 inputs, name = "S2"

Sum3: 3 inputs, name = "S3"

Sum4: 5 inputs, name = "S4"

Sum5: 3 inputs, name = "S5"

Sum6: 3 inputs, name = "S6"

Sum7: 5 inputs, name = "S7"

Sum8: 5 inputs, name = "S8"

--- External Inputs -----------

IN01: s25 X

IN02: s26 X

IN03: s24 X

--- External Outputs ----------

OUT01: s7 X

2.1. LSMODEL 49

OUT02: s13 X

Computing vertex positions... Done.

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

u1

u2

u3

y1

y2

y3

Original Model

External Output Removed

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10
M11

M12

M13

M14

M15

u1

u2

u3

y1

y2

Adding external output

modX = modX.add_ext_out(’s8’)

cla; plot(modX,’io’);

title(’\bfExternal Output Added’);

Large scale model (total order=35, 15 subsystem(s), 8 summator(s)):

--- Subsystems -----------

M1: 1 inputs, 1 outputs, order=3, name="subs1"

M2: 2 inputs, 2 outputs, order=1, name="subs4"

M3: 2 inputs, 1 outputs, order=1, name="subs5"

M4: 1 inputs, 1 outputs, order=2, name="subs6"

M5: 2 inputs, 2 outputs, order=2, name="subs9"

M6: 1 inputs, 1 outputs, order=3, name="subs10"

M7: 2 inputs, 2 outputs, order=1, name="subs11"

M8: 1 inputs, 2 outputs, order=3, name="subs12"

M9: 2 inputs, 2 outputs, order=3, name="subs14"

M10: 1 inputs, 1 outputs, order=3, name="subs15"

M11: 1 inputs, 1 outputs, order=3, name="subs2"

M12: 1 inputs, 2 outputs, order=3, name="subs3"

M13: 1 inputs, 1 outputs, order=2, name="subs7"

M14: 2 inputs, 2 outputs, order=2, name="subs8"

M15: 1 inputs, 2 outputs, order=3, name="subs13"

--- Summators -----------------

Sum1: 3 inputs, name = "S1"

Sum2: 4 inputs, name = "S2"

Sum3: 3 inputs, name = "S3"

Sum4: 5 inputs, name = "S4"

Sum5: 3 inputs, name = "S5"

Sum6: 3 inputs, name = "S6"

Sum7: 5 inputs, name = "S7"

Sum8: 5 inputs, name = "S8"

--- External Inputs -----------

50 CHAPTER 2. EXAMPLES

IN01: s25 X

IN02: s26 X

IN03: s24 X

--- External Outputs ----------

OUT01: s7 X

OUT02: s13 X

OUT03: s8 X

Computing vertex positions... Done.

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

u1

u2

u3

y1

y2

y3

Original Model

External Output Added

M1

M2

M3

M4

M5

M6
M7

M8

M9

M10

M11

M12

M13

M14

M15

u1

u2

u3

y1

y2

y3

Extraction of model part - eliminates submodels which are not controlable and observable for
selected inputs and outputs.

ex_mod = mod.select(’s24’,’s7’);

clf;step(ex_mod);

title(’\bfStep Response for Selected Model Part’);

−1

−0.5

0

0.5

1

1.5
From: s24

T
o
:
s
7

−0.5

0

0.5

1

1.5

T
o
:
s
8

0 10 20 30 40
−0.8

−0.6

−0.4

−0.2

0

T
o
:
s
1
3

From: s25

0 10 20 30 40

From: s26

0 10 20 30 40

Step Response for Selected Model Part

Time (sec)

A
m

p
lit

u
d
e

2.1. LSMODEL 51

Submodels grouping

Each sub-model can be assigned to a group. Each group has its own number and sub-models are
assigned to given groups in property GROUPING. Following command combines sub-models to
groups according to their order.

mod.grouping = mod.orders;

clf; plot(mod,’io’);

Computing vertex positions... Done.

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

u1

u2

u3

y1

y2

y3

Group 1

Group 2

Group 3

Time domain models merging

Merging of multiple models describing the same system. The merging is done in time domain
and allows to combine information from uncertain ARX models with different orders (idarx or
idpoly).

% Load 3 models of the same system identified from different data

% sets. The models have different structure.

[id_mod,sys] = demo_models;

for i=1:3,

LS{i} = LSmodel(id_mod{i},’u1’,’y1’);

52 CHAPTER 2. EXAMPLES

end

LS12 = LS{1}.merge(’M1’,id_mod{2},4,4);

LS123 = LS12.merge(’M1’,id_mod{3},4,4);

% --- Plot the result ---------------------------

sc = 3; % variance scale

figure(10);clf;

w = logspace(-1,log10(pi/id_mod{1}.Ts),300);

X = [w w(end:-1:1)];

axx = [w(1) w(end) 0 2.5];

for i=1:3,

[meanG{i} ,varG{i}] = LS{i}.freq_uncert(’M1’,w);

end

[meanG123,varG123] = LS123.freq_uncert(’M1’,w);

line_c = { ’b’,’g’,’m’ };

fill_c = { [.8 .8 1],[.8 1 .8],[1 .8 .8]};

for i=1:3,

subplot(2,2,i);

h(i) = semilogx(w,meanG{i},line_c{i},’LineWidth’,3); hold on;

Y = meanG{i}+sc*sqrt(varG{i});

Y = [meanG{i}-sc*sqrt(varG{i}) Y(end:-1:1)];

hf(i) = fill(X,Y,fill_c{i},’EdgeAlpha’,0,...

’FaceAlpha’,0.5,’LineStyle’,’none’);

semilogx(w,[meanG{i}-sc*sqrt(varG{i}) ; ...

meanG{i}+sc*sqrt(varG{i})]’,...

[line_c{i} ’--’],’LineWidth’,1);

switch i,

case 1, title(’\bf Model 1 (1st resonance peak)’);

case 2, title(’\bf Model 2 (2nd resonance peak)’);

case 3, title(’\bf Model 3 (low frequencies)’);

end

end

subplot(2,2,4);

h(4) = semilogx(w,meanG123,’r’,’LineWidth’,3); hold on;

Y = meanG123+sc*sqrt(varG123);

Y = [meanG123-sc*sqrt(varG123) Y(end:-1:1)];

hf(4) = fill(X,Y,[1 .8 .8],’EdgeAlpha’,0,...

’FaceAlpha’,0.5,’LineStyle’,’none’);

semilogx(w,[meanG123-sc*sqrt(varG123) ; ...

meanG123+sc*sqrt(varG123)]’,’r--’,’LineWidth’,1);

title(’\bf Merged Models 1, 2, 3’);

[mag,phase] = bode(sys,w);

for i=1:4,

subplot(2,2,i);

horig(i) = semilogx(w,squeeze(mag),’k--’,’LineWidth’,3);

axis(axx); grid on;

xlabel(’Frequency (rad/sec)’); ylabel(’Magnitude’);

legend([h(i) hf(i) horig(i)] , ...

2.1. LSMODEL 53

’mean’,[’+/- ’,num2str(sc),’\sigma’],’orig.’);

end

Current iteration error = 30568.7304

Current iteration error = 30568.7304

Current iteration error = 30568.7304

Current iteration error = 370494.737

Current iteration error = 410827.2347

Current iteration error = 68383.1445

Current iteration error = 30568.7304

Current iteration error = 30568.7304

Current iteration error = 30568.7304

Current iteration error = 203078.9615

Maximum number of iterations exceeded.

Precission matrix quadratic error (normalized)= 0.02566

Current iteration error = 75719.3471

Current iteration error = 914945.2183

Current iteration error = 870103.539

Current iteration error = 54613.5888

Current iteration error = 155621.7346

Current iteration error = 92255.2874

Current iteration error = 137822.2708

Current iteration error = 863230.4205

Current iteration error = 66342.421

Current iteration error = 947935.3184

Maximum number of iterations exceeded.

Precission matrix quadratic error (normalized)= 0.068154

Current iteration error = 4469951.3757

Current iteration error = 2424856.2526

Current iteration error = 2315073.8027

Current iteration error = 2853276.0984

Current iteration error = 2511910.3196

Current iteration error = 2487229.5597

Current iteration error = 2455166.6466

Current iteration error = 2764858.2541

Current iteration error = 2181018.5937

Current iteration error = 2194488.5714

Maximum number of iterations exceeded.

Precission matrix quadratic error (normalized)= 1.1806

********** Warning: Fictive data quality may be low. **********

Current iteration error = 1.5882e-20

Precission matrix quadratic error (normalized)= 9.4199e-26

54 CHAPTER 2. EXAMPLES

Overloaded functions

Many standard functions are overloaded for LSmodel class.

dcgain(mod)

Warning: Matrix is singular, close to singular or badly scaled.

Results may be inaccurate. RCOND = NaN.

ans =

NaN NaN NaN

NaN NaN NaN

NaN NaN NaN

pole(mod)

ans =

-6.6715

-4.4112 + 1.3459i

-4.4112 - 1.3459i

-0.2786 + 1.6244i

-0.2786 - 1.6244i

-2.2857

-2.1010 + 0.2367i

-2.1010 - 0.2367i

-0.1335 + 0.1818i

-0.1335 - 0.1818i

-0.3904

2.1. LSMODEL 55

-1.8142

-0.7314

-0.7882

-0.9910

-1.6759

-1.1631

-1.1784

-1.5414

-1.3276

-1.3349

-1.4047

-0.5040 + 2.7656i

-0.5040 - 2.7656i

-0.3553

-6.6356

-0.3594

-3.4410

-3.8862

-3.7298

-1.2730

-3.6092

-9.9454

-2.3938

-0.7164

zero(mod)

ans =

-7.3180

-6.2397

-0.5040 + 2.7655i

-0.5040 - 2.7655i

1.1169

-0.0229 + 1.2125i

-0.0229 - 1.2125i

-2.8319

-0.0010

-0.8764 + 0.6952i

-0.8764 - 0.6952i

-0.3551

-0.4630

-0.7853

-2.0245

-1.9684

-1.9588

-1.1695

-1.7014

-1.5418

-1.4130

-1.4413

-6.6356

56 CHAPTER 2. EXAMPLES

-0.3594

-3.4410

-3.8862

-3.7298

-1.2730

-3.6092

-9.9454

-2.3938

-0.7164

Impulse response

figure(10);clf;

impulse(mod);

−1

−0.5

0

0.5
From: s24

T
o

:
s
7

−0.6

−0.4

−0.2

0

0.2

0.4

T
o

:
s
8

0 10 20 30 40 50 60
−0.3

−0.2

−0.1

0

0.1

T
o

:
s
1

3

From: s25

0 10 20 30 40 50 60

From: s26

0 10 20 30 40 50 60

Impulse Response

Time (sec)

A
m

p
lit

u
d

e

Step response

step(mod);

2.1. LSMODEL 57

−1

−0.5

0

0.5

1

1.5
From: s24

T
o
:
s
7

−0.5

0

0.5

1

1.5

T
o
:
s
8

0 10 20 30 40
−0.8

−0.6

−0.4

−0.2

0

T
o
:
s
1
3

From: s25

0 10 20 30 40

From: s26

0 10 20 30 40

Step Response

Time (sec)

A
m

p
lit

u
d
e

Bode frequency response

bode(mod);

−100

−50

0

50
From: s24

T
o

:
s
7

0

360

720

T
o

:
s
7

−150

−100

−50

0

T
o

:
s
8

−360

0

360

720

T
o

:
s
8

−150

−100

−50

0

T
o

:
s
1

3

10
−4

10
−2

10
0

10
2

−360

0

360

720

T
o

:
s
1

3

From: s25

10
−4

10
−2

10
0

10
2

From: s26

10
−4

10
−2

10
0

10
2

Bode Diagram

Frequency (rad/sec)

M
a

g
n

it
u

d
e

 (
d

B
)

;
P

h
a

s
e

 (
d

e
g

)

Nyquist frequency response

nyquist(mod);

58 CHAPTER 2. EXAMPLES

−1.5

−1

−0.5

0

0.5

1

1.5
From: s24

T
o

:
s
7

−1

−0.5

0

0.5

1

T
o

:
s
8

−1 −0.5 0 0.5 1 1.5
−0.4

−0.2

0

0.2

0.4

T
o

:
s
1

3

From: s25

−1 −0.5 0 0.5

From: s26

−1 −0.5 0 0.5 1

Nyquist Diagram

Real Axis

Im
a

g
in

a
ry

 A
x
is

Pole-zero map

pzmap(mod);

−10 −8 −6 −4 −2 0 2
−3

−2

−1

0

1

2

3

Pole−Zero Map

Real Axis

Im
a
g
in

a
ry

 A
x
is

Pole-zero map for I/O pairs

iopzmap(mod);

2.2. WNMODEL 59

−2

−1

0

1

2
From: s24

T
o
:
s
7

−2

−1

0

1

2

T
o
:
s
8

−8 −6 −4 −2 0 2
−3

−2

−1

0

1

2

3

T
o
:
s
1
3

From: s25

−8 −6 −4 −2 0 2

From: s26

−8 −6 −4 −2 0 2

Pole−Zero Map

Real Axis

Im
a
g
in

a
ry

 A
x
is

2.2 WNmodel

Demonstration of Water Deistribution Network Model Class WNmodel
This script demosntrates the use of WNmodel class for modeling and model management of Water
Distribution Networks (WN). The demonstration is based on Barcelona water network.

WNmodel modle is child class of general LSmodel class.

Contents

• Load water distribution network model from file
• Plot Water Network Structure
• Network Decomposition for Control
• Networks separation
• Compress model

Load water distribution network model from file

Water network is defined by two files [filename].net and [filename].mat, where ’.net’ defines network
structure and ’.net’ defines variables limits, prices, etc.

Structure definition file is a simple text file describing individual tanks and their interconnec-
tions by specifying signal names and directions.

The first line of each tank definition block specifies tank number and its name:

Tank##,<tank name>

or it can specify node with it number

Node##

60 CHAPTER 2. EXAMPLES

Following lines are same for tanks and nodes:

d,<demand name>

s,<source name>

+,<outlet pump/valve name>,<destination tank name>

-,<inlet pump/valve name>,<source tank name>

Tank/node definition blocks can be separated by empty line(s). Empty lines and Matlab type
comments are ignored.

Variable definition file is standard Matlab MAT file with struct for every signal defining limits
by fields

.min ... min value

.max ... max value

.dmin ... min slope value

.dmax ... max slope value

.smin ... soft limit min value

.smax ... soft limit max value

.type ... signal type (’MV’,’MD’,’UD’,’MO’,’MV’,’X’)

Example (part of definition file):

Tank01,d450BEG

d,c450BEG

-,iBegues4,d369BEG

Tank02,d369BEG

d,c369BEG

+,iBegues4,d450BEG

-,iBegues3,d255BEG

Node1

s,AportA

d,c82PAL

+,vPalleja70,Node2

+,vPapiolATLL,d110PAP

+,iPapiol2AGBAR,d110PAP

+,vFontSanta,d54REL

Node2

d,c70PAL

+,iPalleja4,d125PAL

-,vPalleja70,Node1

<End of example>

mod = WNmodel(’BCN_network’)

No data for signal v70FLL70LLO

No data for signal v70LLO70FLL

Water network model (80 subsystem(s), 0 summator(s)):

--- Tanks & Nodes ----------------

2.2. WNMODEL 61

M01: Tank "d450BEG" , 2 inputs

M02: Tank "d369BEG" , 3 inputs

M03: Tank "d175LOR" , 2 inputs

M04: Tank "d185VIL" , 2 inputs

M05: Tank "d190SCL" , 2 inputs

M06: Tank "d255BEG" , 3 inputs

M07: Tank "d150SBO" , 3 inputs

M08: Tank "d135VIL" , 3 inputs

M09: Tank "d114SCL" , 3 inputs

M10: Tank "d184BEG" , 3 inputs

M11: Tank "d263CES" , 2 inputs

M12: Tank "d205CES" , 3 inputs

M13: Tank "d147SCC" , 3 inputs

M14: Tank "d361CGY" , 2 inputs

M15: Tank "d268CGY" , 3 inputs

M16: Tank "d374CGL" , 2 inputs

M17: Tank "d313CGL" , 2 inputs

M18: Tank "d200CGY" , 3 inputs

M19: Tank "d246CGY" , 2 inputs

M20: Tank "d252CGL" , 4 inputs

M21: Tank "d195TOR" , 5 inputs

M22: Tank "d125PAL" , 4 inputs

M23: Tank "d205FON" , 3 inputs

M24: Tank "d320FON" , 3 inputs

M25: Tank "d175PAP" , 2 inputs

M26: Tank "d400MGB" , 3 inputs

M27: Tank "d110PAP" , 4 inputs

M28: Tank "d320MGB" , 3 inputs

M29: Tank "d437VVI" , 3 inputs

M30: Tank "d300BAR" , 4 inputs

M31: Tank "d176BARsud", 4 inputs

M32: Tank "d200BLL" , 5 inputs

M33: Tank "d200BSO" , 2 inputs

M34: Tank "d328SGE" , 2 inputs

M35: Tank "d260SGE" , 3 inputs

M36: Tank "d255CAR" , 2 inputs

M37: Tank "d200ALT" , 5 inputs

M38: Tank "d130BAR" , 9 inputs

M39: Tank "d197BET" , 3 inputs

M40: Tank "d200FDM" , 2 inputs

M41: Tank "d132CMF" , 3 inputs

M42: Tank "d215VALL" , 4 inputs

M43: Tank "d184SMM" , 2 inputs

M44: Tank "d101MIR" , 9 inputs

M45: Tank "d169CME" , 2 inputs

M46: Tank "d202CRU" , 2 inputs

M47: Tank "d225GUI" , 2 inputs

M48: Tank "d197GUI" , 3 inputs

M49: Tank "d151BON" , 2 inputs

M50: Tank "d117MTG" , 2 inputs

M51: Tank "d190TCA" , 2 inputs

M52: Tank "d171SAM" , 3 inputs

M53: Tank "d144TPI" , 2 inputs

M54: Tank "d120POM" , 3 inputs

62 CHAPTER 2. EXAMPLES

M55: Tank "d70BBE" , 8 inputs

M56: Tank "d100CFE" , 10 inputs

M57: Tank "d54REL" , 4 inputs

M58: Tank "d10COR" , 6 inputs

M59: Tank "dPLANTA" , 4 inputs

M60: Tank "d80GAVi80CAS85", 9 inputs

M61: Tank "d115CAST" , 6 inputs

M62: Tank "d130LSE" , 2 inputs

M63: Tank "d145MMA" , 3 inputs

M64: Node1 , 6 inputs

M65: Node2 , 3 inputs

M66: Node3 , 4 inputs

M67: Node4 , 7 inputs

M68: Node5 , 3 inputs

M69: Node6 , 9 inputs

M70: Node7 , 7 inputs

M71: Node8 , 2 inputs

M72: Node9 , 6 inputs

M73: Node10 , 4 inputs

M74: Node11 , 8 inputs

M75: Node13 , 6 inputs

M76: Node14 , 3 inputs

M77: Node15 , 3 inputs

M78: Node16 , 6 inputs

M79: NodeA , 5 inputs

M80: NodeB , 7 inputs

--- External Inputs -----------

IN01: c450BEG MD

IN02: iBegues4 MV (min=0,max=0.09)

IN03: c369BEG MD

IN04: iBegues3 MV (min=0,max=0.09)

IN05: c175LOR MD

IN06: iOrioles MV (min=0,max=0.008)

IN07: c185VIL MD

IN08: iViladecans2 MV (min=0,max=0.015)

IN09: c190SCL MD

IN10: iStCliment2 MV (min=0,max=0.06)

IN11: c255BEG MD

IN12: iBegues2 MV (min=0,max=0.1)

IN13: c150SBO MD

IN14: iStBoi MV (min=0,max=0.08)

IN15: c135VIL MD

IN16: iViladecans1 MV (min=0,max=0.08)

IN17: c114SCL MD

IN18: iStCliment1 MV (min=0,max=0.03)

IN19: c184ESP MD

IN20: iBegues1 MV (min=0,max=0.1)

IN21: c263CES MD

IN22: iCesalpina2 MV (min=0,max=0.025)

IN23: c205CES MD

IN24: iCesalpina1 MV (min=0,max=0.035)

IN25: c147SCC MD

IN26: iStaClmCervello MV (min=0,max=0.04)

IN27: c361CGY MD

2.2. WNMODEL 63

IN28: iCanGuey3 MV (min=0,max=0.009)

IN29: c268CGY MD

IN30: iCanGuey2 MV (min=0,max=0.01)

IN31: c374CGL MD

IN32: iCanGuell2d5 MV (min=0,max=0.01)

IN33: c313CGL MD

IN34: iCanGuell2d3 MV (min=0,max=0.009)

IN35: c200CGY MD

IN36: iCanGuey1d2 MV (min=0,max=0.015)

IN37: c246CGY MD

IN38: iCanGuey1d5 MV (min=0,max=0.01)

IN39: c252CGL MD

IN40: iCanGuell1 MV (min=0,max=0.02)

IN41: c195TOR MD

IN42: iCanRoig MV (min=0,max=0.027)

IN43: aMS MV

IN44: c125PAL MD

IN45: iPalleja4 MV (min=0,max=0.035)

IN46: iPalleja1 MV (min=0,max=0.03)

IN47: c205FON MD

IN48: iPalleja2 MV (min=0,max=0.03)

IN49: c320FON MD

IN50: c356FON MD

IN51: c175PAP135PAP MD

IN52: iPapiol1 MV (min=0,max=0.02)

IN53: c400MGB MD

IN54: c475MGB MD

IN55: iMasGuimbau2 MV (min=0,max=0.005)

IN56: c110PAP MD

IN57: vPapiolATLL MV (min=0,max=0.075)

IN58: iPapiol2AGBAR MV (min=0,max=0.025)

IN59: c320MGB MD

IN60: iMasGuimbau1 MV (min=0,max=0.008)

IN61: c437VVI MD

IN62: c541TIB MD

IN63: iTibidabo MV (min=0,max=0.066)

IN64: c300BAR MD

IN65: iFinestrelles300 MV (min=0,max=0.5)

IN66: c176BARsud MD

IN67: vFinestrllEsplg MV (min=0,max=0.2)

IN68: iFinestrelles176 MV (min=0,max=0.23)

IN69: vBonanova MV (min=0,max=0.4)

IN70: c200BLL MD

IN71: iBellsoleig MV (min=0,max=0.006)

IN72: iCornella130 MV (min=0,max=0.2)

IN73: iFinestrelles200 MV (min=0,max=0.6)

IN74: vFinestrelles MV (min=0,max=0.8)

IN75: c200BSO MD

IN76: c328SGE MD

IN77: iStGenis2 MV (min=0,max=0.03)

IN78: c260SGE MD

IN79: iStGenis1 MV (min=0,max=0.25)

IN80: c255CAR MD

IN81: iCarmel MV (min=0,max=0.1)

64 CHAPTER 2. EXAMPLES

IN82: c200ALT MD

IN83: c150ALT MD

IN84: iAltures MV (min=0,max=0.425)

IN85: vBaroStLluis MV (min=0,max=0.15)

IN86: c130BAR MD

IN87: vMix1 MV (min=0,max=3.2)

IN88: iCollblanc MV (min=0,max=0.9)

IN89: vCollblanc MV (min=0,max=0.8)

IN90: vEsplugues MV (min=0,max=0.5)

IN91: c197BET MD

IN92: c238UAB MD

IN93: iCerdUAB MV (min=0,max=0.2)

IN94: c200FDM MD

IN95: iFlorMaig MV (min=0,max=0.01)

IN96: c132CMF MD

IN97: iCerdMontflorit MV (min=0,max=0.3)

IN98: c260VALL MD

IN99: c275BEV MD

IN100: c215VALL MD

IN101: iVallensana1 MV (min=0,max=0.01)

IN102: c184SMM MD

IN103: iStaMaMontcada MV (min=0,max=0.008)

IN104: c101MIR MD

IN105: c250VASAB MD

IN106: iTorreBaro1 MV (min=0,max=0.2)

IN107: vTerMontcada MV (min=0,max=0.35)

IN108: vBesosMontcCerd MV (min=0,max=0.8)

IN109: c169CME MD

IN110: c202CRU MD

IN111: iCanRuti MV (min=0,max=0.04)

IN112: c225GUI MD

IN113: iGuinardera2 MV (min=0,max=0.008)

IN114: c197GUI MD

IN115: iGuinardera1 MV (min=0,max=0.04)

IN116: c151BON MD

IN117: iBonavista MV (min=0,max=0.01)

IN118: c117MTG MD

IN119: vMontigala MV (min=0,max=0.1)

IN120: c190TCA MD

IN121: iTorreoCastell MV (min=0,max=0.04)

IN122: c171SAM MD

IN123: iMntjcStaAmalia MV (min=0,max=0.18)

IN124: c144TPI MD

IN125: iMntjcTresPins MV (min=0,max=0.2)

IN126: c120POM MD

IN127: iMorera MV (min=0,max=0.06)

IN128: vConflent MV (min=0,max=0.1)

IN129: c70BBE MD

IN130: c55BAR MD

IN131: vPsgStJoan MV (min=0,max=1)

IN132: vTrinitat70 MV (min=0,max=2)

IN133: vCerdaTraja MV (min=0,max=1.8)

IN134: c100CFE MD

IN135: vSJD MV (min=0,max=1)

2.2. WNMODEL 65

IN136: iEsplugues MV (min=0,max=0.65)

IN137: vRossichMaq MV (min=0,max=3.61)

IN138: vZonaFranca MV (min=0,max=3)

IN139: iCornella100 MV (min=0,max=3.5)

IN140: iRelleu MV (min=0,max=3.5)

IN141: vPousEstrella MV (min=0,max=0.23)

IN142: vFontSanta MV (min=0,max=1.2)

IN143: iCornella50 MV (min=0,max=0.6)

IN144: iSJD50 MV (min=0,max=1.8)

IN145: cRECARREGA MD

IN146: iCornella70 MV (min=0,max=0.5)

IN147: iSJD10 MV (min=0,max=2.9)

IN148: iSJD70 MV (min=0,max=0.4)

IN149: vSJDTot MV (min=0,max=5.3)

IN150: c80GAVi80CAS85 MD

IN151: aPousCAST MV

IN152: vGava100a80 MV (min=0,max=0.4)

IN153: iGava4 MV (min=0,max=0.06)

IN154: vCanyars MV (min=0,max=0.15)

IN155: iLaSentiu MV (min=0,max=0.008)

IN156: iBellamar MV (min=0,max=0.06)

IN157: iCastelldefels MV (min=0,max=0.15)

IN158: vCanRoca MV (min=0,max=0.05)

IN159: c115CAST MD

IN160: aCAST8 MV

IN161: iMasJove MV (min=0,max=0.025)

IN162: c130LSE MD

IN163: c145MMA MD

IN164: c175BVI MD

IN165: AportA MV

IN166: c82PAL MD

IN167: vPalleja70 MV (min=0,max=0.06)

IN168: c70PAL MD

IN169: c140LLO MD

IN170: c200BARsc MD

IN171: c176BARnord MD

IN172: vMinaCiutat MV (min=0,max=2)

IN173: vPortola MV (min=0,max=0.15)

IN174: c176BARcentre MD

IN175: c135MGA MD

IN176: AportT MV

IN177: vTrinitat200 MV (min=0,max=0.8)

IN178: vTerStaColoma MV (min=0,max=0.28)

IN179: vMix2 MV (min=0,max=3.4)

IN180: c100LLO MD

IN181: c100BES MD

IN182: vBesosStaColoma MV (min=0,max=0.5)

IN183: c100BLLsud MD

IN184: vMix3 MV (min=-5.9,max=5)

IN185: vTorrassa MV (min=0,max=2)

IN186: c100BLLcentre MD

IN187: vCncpcioArenal MV (min=0,max=1.5)

IN188: c70FLL MD

IN189: c70CFE MD

66 CHAPTER 2. EXAMPLES

IN190: v70FLL70LLO MV (min=0,max=0.159)

IN191: v70LLO70FLL MV (min=0,max=0.104)

IN192: c135SCG MD

IN193: AportLL1 MV

IN194: AportLL2 MV

IN195: aPousE1 MV

IN196: aPousE2 MV

IN197: c70LLO MD

IN198: c250TBA MD

IN199: c200BARnord MD

IN200: iRoquetes MV (min=0,max=0.25)

IN201: c100BLLnord MD

IN202: aPousB MV

--- External Outputs ----------

OUT01: d450BEG MO (min=100,max=2900)

OUT02: d369BEG MO (min=400,max=2900)

OUT03: d175LOR MO (min=10,max=80)

OUT04: d185VIL MO (min=20,max=205)

OUT05: d190SCL MO (min=150,max=1000)

OUT06: d255BEG MO (min=400,max=2900)

OUT07: d150SBO MO (min=340,max=2750)

OUT08: d135VIL MO (min=300,max=920)

OUT09: d114SCL MO (min=113,max=480)

OUT10: d184BEG MO (min=400,max=2900)

OUT11: d263CES MO (min=200,max=1600)

OUT12: d205CES MO (min=50,max=300)

OUT13: d147SCC MO (min=32,max=801)

OUT14: d361CGY MO (min=20,max=92)

OUT15: d268CGY MO (min=18,max=82)

OUT16: d374CGL MO (min=100,max=500)

OUT17: d313CGL MO (min=40,max=200)

OUT18: d200CGY MO (min=12,max=100)

OUT19: d246CGY MO (min=7,max=100)

OUT20: d252CGL MO (min=50,max=270)

OUT21: d195TOR MO (min=70,max=1900)

OUT22: d125PAL MO (min=15,max=445)

OUT23: d205FON MO (min=100,max=480)

OUT24: d320FON MO (min=600,max=2000)

OUT25: d175PAP MO (min=600,max=2100)

OUT26: d400MGB MO (min=55,max=450)

OUT27: d110PAP MO (min=375,max=960)

OUT28: d320MGB MO (min=25,max=78)

OUT29: d437VVI MO (min=1003,max=2985)

OUT30: d300BAR MO (min=1050,max=5800)

OUT31: d176BARsud MO (min=200,max=1035)

OUT32: d200BLL MO (min=700,max=7300)

OUT33: d200BSO MO (min=35,max=240)

OUT34: d328SGE MO (min=82,max=1907)

OUT35: d260SGE MO (min=350,max=3072)

OUT36: d255CAR MO (min=34,max=465)

OUT37: d200ALT MO (min=50,max=4240)

OUT38: d130BAR MO (min=3840,max=16000)

OUT39: d197BET MO (min=520,max=2800)

OUT40: d200FDM MO (min=300,max=1000)

2.2. WNMODEL 67

OUT41: d132CMF MO (min=500,max=2985)

OUT42: d215VALL MO (min=50,max=300)

OUT43: d184SMM MO (min=50,max=205)

OUT44: d101MIR MO (min=1403,max=4912)

OUT45: d169CME MO (min=50,max=3002)

OUT46: d202CRU MO (min=40,max=275)

OUT47: d225GUI MO (min=40,max=190)

OUT48: d197GUI MO (min=100,max=3000)

OUT49: d151BON MO (min=10,max=43)

OUT50: d117MTG MO (min=1000,max=4500)

OUT51: d190TCA MO (min=2,max=32)

OUT52: d171SAM MO (min=99,max=1750)

OUT53: d144TPI MO (min=447,max=4770)

OUT54: d120POM MO (min=150,max=1785)

OUT55: d70BBE MO (min=0,max=62750)

OUT56: d100CFE MO (min=16500,max=65200)

OUT57: d54REL MO (min=800,max=3100)

OUT58: d10COR MO (min=0,max=11745)

OUT59: dPLANTA MO (min=0,max=14450)

OUT60: d80GAVi80CAS85 MO (min=480,max=3250)

OUT61: d115CAST MO (min=198,max=3870)

OUT62: d130LSE MO (min=21,max=130)

OUT63: d145MMA MO (min=100,max=480)

OUT64: Node1 X

OUT65: Node2 X

OUT66: Node3 X

OUT67: Node4 X

OUT68: Node5 X

OUT69: Node6 X

OUT70: Node7 X

OUT71: Node8 X

OUT72: Node9 X

OUT73: Node10 X

OUT74: Node11 X

OUT75: Node13 X

OUT76: Node14 X

OUT77: Node15 X

OUT78: Node16 X

OUT79: NodeA X

OUT80: NodeB X

Plot Water Network Structure

figure(1);clf;subfigure(1,1,1,1); %maximize figure

mod = plot(mod);

Computing vertex positions... Done.

68 CHAPTER 2. EXAMPLES

M1

M2

M3

M4

M5

M6

M7

M8

M9 M10

M11

M12

M13

M14

M15

M16

M17

M18

M19

M20

M21

M22

M23

M24

M25

M26

M27

M28

M29

M30

M31

M32

M33

M34

M35

M36

M37

M38

M39

M40

M41
M42

M43

M44

M45

M46

M47

M48

M49

M50

M51

M52

M53

M54

M55

M56

M57

M58

M59

M60

M61

M62

M63

M64

M65

M66

M67

M68

M69

M70

M71

M72

M73

M74

M75

M76
M77

M78

M79
M80

Water Distribution Network Scheme

Network Decomposition for Control

Decomposition of water network to a set of tanks for distributed control. EPS can be used
to find given number of sets by applying graph algorithms of leaf condensation and \epsilon
decomposition.

Decomposition to 6 groups

figure(2);clf;

subfigure(2,1,1,1);

mod6 = mod.eps(6);

mod6 = plot(mod6);

title(’\bfDecomposition to 6 groups’);

Undefined function or method ’components’ for input arguments of type ’double’.

2.3. ACG 69

Error in ==> LSmodel.LSmodel>LSmodel.epsdec_groups at 1610

[comp, sizes] = components(sparse(A));

Error in ==> WNmodel.WNmodel>WNmodel.eps at 439

[~,perm,block,~] = LSmodel.epsdec_groups(I,n_target,’inv’);

Error in ==> WNmodel_example at 92

mod6 = mod.eps(6);

Decomposition to 12 groups

figure(3);clf;

subfigure(3,1,1,1);

mod12 = mod.eps(12);

mod12 = plot(mod12);

title(’\bfDecomposition to 12 groups’);

Networks separation

LS model of any group can be obtained by command GROUP.

figure(4);clf;

subfigure(4,1,1,1);

for i=1:12,

subplot(3,4,i);

plot(mod12.group(i));

title([’\bfGroup ’ num2str(i)]);

end

Compress model

Model modifications using GROUPS, REM MOD, SELECT, ... keeps unused inputs/outputs and
submodels in LS model. SQUEEZE can be used to remove them.

mod12_gr9 = mod12.group(9);

mod12_gr9 = mod12_gr9.squeeze;

figure(5);clf;

subfigure(5,1,1,1);

step(mod12_gr9);

2.3 acg

70 CHAPTER 2. EXAMPLES

Contents

• Automatic Code Generation Example

• Setup simulation paramaters

• Start simulation

• Conclusions

Automatic Code Generation Example

This example shows how to use the ACG for simulating a networked control system.

For a detailed description of ACG please refer to the class reference.

close all

clc

Define number and positions of sensors and actuators

Ns = 1;

Na = 1;

Xpos = rand((Ns+Na)*2,1);

Ypos = rand((Ns+Na)*2,1);

Set the mane to give to the generated .mld file

name=’Example’;

Create a new instance of ACG obj

acg_obj=ACG(Ns,Na,name);

acg_obj.RemoveOldCode;

acg_obj.GenerateCode;

Warning: Block diagram ’Example’ contains disabled library links. Use Model Advisor to find the disabled links in non-library models. The diagram has been saved but

may not contain what you intended.

Warning: Block diagram ’Example’ contains disabled library links. Use Model Advisor to find the disabled links in non-library models. The diagram has been saved but

may not contain what you intended.

r, y

Wireless Network

snd1

snd3

rcv1

rcv4

To Workspace

simout

Sensor Sender1

input Snd

Sensor Receiver2
rcv Out

Reference Signal

ref

Plant

Actuator3 Sensor1

Goto4

Rrcv4

Goto3

Rsnd3
Goto2

Srcv2

Goto1

Ssnd1

From4

Rrcv4

From3

Rsnd3

From2

Srcv2 From1

Ssnd1

Display

Controller

Reference

Sensor1

Actuator3

Clock

Actuator Sender3

Input send

Actuator Receiver4

Rcv Out

2.3. ACG 71

rcv4

2
rcv1

1

Y positions

Ypos

X positions

Xpos

TrueTime Wireless Network

Snd

x

y

Rcv

Schedule

P

1 Terminator3

Terminator 4

Network
Schedule

Ground4

Demux

snd3

2

snd1

1

Setup plant parameters

A=diag([0.1 .21 .3])+0.01*rand(3);

B=diag([.1 .3 .6]);

C=diag([2 4 1]);

D=zeros(3);

x0=[10 10 40];

Create and configure a the Plant and Controller submodels of the generated simulik model. Here
the generation is performed in a script fashion for automatization proposes, however the user may
use the graphical interface.

add_block(’simulink/Signal Routing/Mux’,[name ’/Plant/Mux’]);

set_param([name ’/Plant/Mux’],’inputs’,’3’);

add_block(’simulink/Signal Routing/Demux’,[name ’/Plant/Demux’]);

set_param([name ’/Plant/Demux’],’outputs’,’3’);

add_block(’simulink/Continuous/State-Space’,[name ’/Plant/State-Space’]);

add_line([name ’/Plant’],’Mux/1’,’State-Space/1’);

add_line([name ’/Plant’],’State-Space/1’,’Demux/1’);

for i=1:1

add_line([name ’/Plant’],[’Actuator’ num2str(i*2+Ns) ’/1’],[’Mux/’...

num2str(i)]);

add_line([name ’/Plant’],[’Demux/’ num2str(i)],[’Sensor’ ...

num2str(2*i-1) ’/1’]);

end

set_param([name ’/Plant/State-Space’],’A’,’A’,’B’,’B’,’C’,’C’,’D’,...

’D’,’x0’,’x0’);

72 CHAPTER 2. EXAMPLES

Configure the controller

add_block(’simulink/Signal Routing/Demux’,[name ’/Controller/Demux’]);

set_param([name ’/Controller/Demux’],’outputs’,’3’);

for i=1:1

ii=num2str(i);

add_block(’simulink/Math Operations/Sum’,[name ’/Controller/Sum’ ii]);

set_param([name ’/Controller/Sum’ ii],’ListOfSigns’,’+-|’);

add_block(’simulink/Math Operations/Gain’,[name ’/Controller/Gain’ ii]);

add_line([name ’/Controller’],[’Demux/’ ii],[’Sum’ ii ’/1’]);

add_line([name ’/Controller’],[’Sensor’ num2str(2*i-1) ,’/1’],[’Sum’...

ii ’/2’]);

add_line([name ’/Controller’],[’Sum’ ii ’/1’],[’Gain’ ii ’/1’]);

add_line([name ’/Controller’],[’Gain’ ii ’/1’],[’Actuator’ ...

num2str(2*i+Ns) ’/1’]);

end

add_line([name ’/Controller’],’Reference/1’,’Demux/1’);

set_param([name ’/Controller/Gain1’],’gain’,’30’);

%set_param([name ’/Controller/Gain2’],’gain’,’6’);

%set_param([name ’/Controller/Gain3’],’gain’,’60’);

Setup simulation paramaters

Reference

ref = [8 -5 35]’;

Antennas transmit power

set_param([name ’/Wireless Network/TrueTime Wireless Network’],...

’TransPower’,’-30’);

save_system(name)

Warning: Block diagram ’Example’ contains disabled library links. Use Model Advisor to find the disabled links in non-library models. The diagram has been saved but

may not contain what you intended.

Start simulation

sim(name);

plot(simout.time,simout.signals.values,’b’,simout.time,ref*ones(1,...

length(simout.time)),’r’);

disp(’Few packets have gone lost using the current transmission power.’)

disp([’Press any key for use a lower transmission power and observe’...

’ the effects.’])

pause

2.3. ACG 73

TrueTime, Version 1.5

Copyright (c) 2007

Martin Ohlin, Dan Henriksson and Anton Cervin

Department of Automatic Control LTH

Lund University, Sweden

Wireless network data:

Transmit power is: -30.00 dbm <==> 0.00 mW

Receiver threshold is: -48.00 dbm <==> 1.58e-05 mW

Maximum signal reach is calculated to: 62.10 m

Warning: Output port 2 of ’Example/Controller/Demux’ is not connected.

Warning: Output port 3 of ’Example/Controller/Demux’ is not connected.

Warning: Output port 2 of ’Example/Plant/Demux’ is not connected.

Warning: Output port 3 of ’Example/Plant/Demux’ is not connected.

Warning: Input port 2 of ’Example/Plant/Mux’ is not connected.

Warning: Input port 3 of ’Example/Plant/Mux’ is not connected.

Few packets have gone lost using the current transmission power.

Press any key for use a lower transmission power and observe the effects.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

10

15

20

25

30

35

Decrease antenna transmit power

set_param([name ’/Wireless Network/TrueTime Wireless Network’],...

’TransPower’,’-46’);

save_system(name)

74 CHAPTER 2. EXAMPLES

sim(name);

hold on

plot(simout.time,simout.signals.values,’--b’,simout.time,...

ref*ones(1,length(simout.time)),’r’);

Warning: Block diagram ’Example’ contains disabled library links. Use Model Advisor to find the disabled links in non-library models. The diagram has been saved but

may not contain what you intended.

TrueTime, Version 1.5

Copyright (c) 2007

Martin Ohlin, Dan Henriksson and Anton Cervin

Department of Automatic Control LTH

Lund University, Sweden

Wireless network data:

Transmit power is: -46.00 dbm <==> 0.00 mW

Receiver threshold is: -48.00 dbm <==> 1.58e-05 mW

Maximum signal reach is calculated to: 0.58 m

Warning: Output port 2 of ’Example/Controller/Demux’ is not connected.

Warning: Output port 3 of ’Example/Controller/Demux’ is not connected.

Warning: Output port 2 of ’Example/Plant/Demux’ is not connected.

Warning: Output port 3 of ’Example/Plant/Demux’ is not connected.

Warning: Input port 2 of ’Example/Plant/Mux’ is not connected.

Warning: Input port 3 of ’Example/Plant/Mux’ is not connected.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

10

15

20

25

30

35

2.4. DECLMI 75

Conclusions

Figure 1 shows how the transmit power determine the performance of the control actions. In
particular for the continous line (-30db transmit power) convergence is achieved, while for the
lower trasmit power case (-46 db, depicted in dashed line) is possible to observe divergence of 2
of the 3 states.

acg_obj.RemoveOldCode;

2.4 decLMI

Contents

• Example of decLMI decentralized controller synthesis
• Plant model
• Markov chain description
• Centralized ideal
• Decentralized ideal
• Decentralized lossy (robust)
• Decentralized stochastic
• Simulation
• Conclusions

Example of decLMI decentralized controller synthesis

This demo file shows how to use the DECLMI class to synthesize three LTI proportional controllers
that guarantees stability while fulfilling constraints for the netwotk depicted below:

76 CHAPTER 2. EXAMPLES

Controllers are:

• centralized ideal: each actuator can always exploit the whole state measurements to compute
the control action;

• decentralized ideal: each actuator can exploit a subset of state measurements to compute
the control action, and that set is time invariant;

• decentralized lossy: each controller can exploit a subset of state measurements, and meas-
ruements sent through some network links can be lost. No stochastic model of the dropouts
is exploited here. The resulting controller guarantees robust convergence to the origin for
any occurrence of packet dropouts.

Moreover, a stochastic controller is also computed, which guarantees closed-loop stability in the
mean-square sense. It exploits a model of the packet dropouts as given by a two-state Markov
chain. In this case the constraints are not guaranteed to hold at every time step.

close all

clc

Plant model

Net describes how the network is connected: * 1 = wired (reliable); * -1 = wireless (unreliable,
i.e., seubject to dropouts); * 0 = no link.

% e f g h j k l m

Net = [1 1 1 0 0 -1 0 0 % a

-1 1 0 1 1 0 0 0 % b

0 0 1 0 0 1 1 -1 % c

0 0 0 -1 1 0 1 1]; % d

[m,n]=size(Net);

State space matrices of the LTI discrete-time model $x(k+1) = A x(k) + B u(k)

A =[0.2843 -0.2895 0.1268 -0.0624 -0.2098 0.1882 -0.0061 0.2227;

-0.2729 0.5052 0.0129 -0.1057 -0.1361 0.2154 0.2799 -0.0183;

0.1610 -0.1229 0.1829 -0.4267 0.0589 -0.0905 -0.0417 -0.1709;

-0.1084 -0.0138 -0.4611 -0.0735 -0.2013 0.1463 0.0854 -0.1567;

-0.0300 -0.1167 -0.0012 -0.1847 0.3547 0.2081 0.0567 0.1566;

0.2852 0.3036 -0.0994 0.1240 0.1099 0.1262 0.0229 -0.1599

-0.0032 0.1558 -0.1285 0.1898 -0.0040 0.0017 0.7065 -0.1697;

0.1961 -0.0173 -0.1023 -0.1888 0.0327 -0.2866 -0.1202 0.3198];

B =[0 -2.2374 -0.4531 0;

-0.1794 1.0976 1.3995 0.4287;

-1.4671 0 -0.4620 -0.7370;

1.3953 -1.6146 0.0327 0.5649;

0.4408 -1.2287 0.7988 -1.3842;

0.5654 0.2074 0.8968 0.4603;

0 0 0.1379 0;

0 -1.0061 0 0.3798];

Sample time

2.4. DECLMI 77

Ts = 1;

Constraints on input and state sqrt(x’x) <= xmax, sqrt(u’u)<=umax

xmax = 150;

umax = 150;

%Weights

Qx = eye(n);

Qu = 1e-2*eye(m);

Vertices of the initial state uncertainty polytope

X0 = [

7.7618 7.7618 8.7618 8.7618

6.0485 7.0485 6.0485 7.0485

6.2866 6.2866 6.2866 6.2866

6.6018 6.6018 6.6018 6.6018

5.1547 5.1547 5.1547 5.1547

7.8859 7.8859 7.8859 7.8859

5.1507 5.1507 5.1507 5.1507

5.0470 5.0470 5.0470 5.0470];

Markov chain description

The two-state Markov chain is described by:

• d : array, where d(i) is the probability of losing a packet being in the i-th state of the Markov
chain;

• q : array, where q(i) is the probability of of remaining in the i-th state of the Markov chain.

Mc.d = [.1 .5];

Mc.q = [.8 .5];

Computation instance creation

obj = decLMI(Net,A,B,Qx,Qu,X0,xmax,umax,Mc);

Now all the controller synthesis problems are formulated and solved. The time needed for each
computation is stored for comparison purposes.

Centralized ideal

tic

obj=obj.solve_centralized_lmi();

CPUtime.centralized = toc;

78 CHAPTER 2. EXAMPLES

Solving centralized SDP problem...

IBM ILOG License Manager: "IBM ILOG Optimization Suite for Academic Initiative" is accessing CPLEX SeDuMi 1.3 by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003.

Alg = 2: xz-corrector, theta = 0.250, beta = 0.500

eqs m = 69, order n = 101, dim = 1573, blocks = 9

nnz(A) = 1872 + 0, nnz(ADA) = 4761, nnz(L) = 2415

it : b*y gap delta rate t/tP* t/tD* feas cg cg prec

0 : 7.53E+04 0.000

1 : -1.78E+04 2.49E+04 0.000 0.3311 0.9000 0.9000 1.07 1 1 8.5E+00

2 : -1.94E+04 6.62E+03 0.000 0.2654 0.9000 0.9000 1.41 1 1 2.8E+00

3 : -5.13E+03 2.66E+03 0.000 0.4016 0.9000 0.9000 2.59 1 1 7.4E-01

4 : -4.41E+02 6.11E+02 0.000 0.2299 0.9000 0.9000 2.61 1 1 3.3E-01

5 : -1.02E+02 1.50E+02 0.000 0.2449 0.9000 0.9000 1.20 1 1 2.8E-01

6 : -7.92E+01 8.63E+01 0.000 0.5769 0.9000 0.9000 0.98 1 1 2.2E-01

7 : -1.33E+02 4.53E+01 0.000 0.5247 0.9000 0.9000 0.39 1 1 1.4E-01

8 : -1.77E+02 1.70E+01 0.000 0.3752 0.9000 0.9000 0.43 1 1 6.9E-02

9 : -1.92E+02 1.18E+01 0.008 0.6939 0.9000 0.9000 0.47 1 1 5.6E-02

10 : -2.25E+02 6.00E+00 0.000 0.5095 0.9000 0.9000 0.17 1 1 5.1E-02

11 : -2.47E+02 3.89E+00 0.000 0.6483 0.9000 0.9000 0.04 1 1 5.1E-02

12 : -3.03E+02 1.59E+00 0.000 0.4079 0.9000 0.9000 0.17 1 1 3.1E-02

13 : -3.32E+02 8.80E-01 0.000 0.5545 0.9000 0.9000 0.31 1 1 2.5E-02

14 : -3.60E+02 4.66E-01 0.000 0.5296 0.9000 0.9000 0.42 1 1 1.8E-02

15 : -3.82E+02 2.60E-01 0.000 0.5568 0.9000 0.9000 0.55 1 1 1.2E-02

16 : -3.98E+02 1.47E-01 0.000 0.5652 0.9000 0.9000 0.66 1 1 8.2E-03

17 : -4.10E+02 7.85E-02 0.000 0.5347 0.9000 0.9000 0.76 1 1 5.0E-03

18 : -4.19E+02 3.92E-02 0.000 0.5001 0.9000 0.9000 0.84 1 1 2.7E-03

19 : -4.24E+02 1.71E-02 0.000 0.4348 0.9000 0.9000 0.91 1 1 1.3E-03

20 : -4.27E+02 5.79E-03 0.000 0.3394 0.9000 0.9000 0.95 1 1 4.4E-04

21 : -4.28E+02 1.32E-03 0.000 0.2271 0.9000 0.9000 0.98 1 1 1.0E-04

22 : -4.29E+02 8.26E-05 0.192 0.0628 0.9900 0.9900 0.99 1 1 6.5E-06

23 : -4.29E+02 4.75E-06 0.000 0.0575 0.9900 0.9900 1.00 1 1 3.7E-07

24 : -4.29E+02 1.56E-08 0.398 0.0033 0.9990 0.9990 1.00 4 4 1.2E-09

Run into numerical problems.

iter seconds digits c*x b*y

24 1.5 9.3 -4.2868543504e+02 -4.2868543527e+02

|Ax-b| = 2.7e-11, [Ay-c]_+ = 1.1E-08, |x|= 4.3e+02, |y|= 1.1e+03

Detailed timing (sec)

Pre IPM Post

2.280E-01 8.476E-01 5.584E-02

Max-norms: ||b||=1, ||c|| = 22500,

Cholesky |add|=0, |skip| = 13, ||L.L|| = 2.09332e+07.

\nCentralized SDP problem solved!\n

2.4. DECLMI 79

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

Centralized feedback: Eigenvalues

Decentralized ideal

tic

obj = obj.solve_dec_ideal_lmi();

CPUtime.dec_ideal = toc;

Solving decentralized SDP problem...

SeDuMi 1.3 by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003.

Alg = 2: xz-corrector, theta = 0.250, beta = 0.500

eqs m = 29, order n = 101, dim = 1573, blocks = 9

nnz(A) = 616 + 0, nnz(ADA) = 841, nnz(L) = 435

it : b*y gap delta rate t/tP* t/tD* feas cg cg prec

0 : 7.53E+04 0.000

1 : -1.76E+04 2.43E+04 0.000 0.3227 0.9000 0.9000 1.07 1 1 8.2E+00

2 : -1.92E+04 6.63E+03 0.000 0.2727 0.9000 0.9000 1.44 1 1 2.7E+00

3 : -5.30E+03 2.85E+03 0.000 0.4299 0.9000 0.9000 2.68 1 1 7.4E-01

4 : -4.06E+02 5.81E+02 0.000 0.2038 0.9000 0.9000 2.43 1 1 3.7E-01

5 : -1.02E+02 1.51E+02 0.000 0.2593 0.9000 0.9000 1.14 1 1 3.2E-01

6 : -8.58E+01 8.72E+01 0.000 0.5790 0.9000 0.9000 0.96 1 1 2.5E-01

7 : -1.34E+02 5.06E+01 0.000 0.5807 0.9000 0.9000 0.35 1 1 1.6E-01

8 : -1.94E+02 1.77E+01 0.226 0.3498 0.9000 0.9000 0.38 1 1 7.5E-02

9 : -2.12E+02 1.25E+01 0.280 0.7077 0.9000 0.9000 0.47 1 1 6.1E-02

10 : -2.26E+02 9.76E+00 0.039 0.7784 0.9000 0.9000 0.23 1 1 5.8E-02

11 : -2.34E+02 7.31E+00 0.000 0.7492 0.9000 0.9000 -0.31 1 1 7.0E-02

80 CHAPTER 2. EXAMPLES

12 : -2.95E+02 3.23E+00 0.000 0.4419 0.9000 0.9000 -0.15 1 1 5.7E-02

13 : -3.83E+02 1.02E+00 0.000 0.3148 0.9000 0.9000 0.18 1 1 2.7E-02

14 : -4.30E+02 4.25E-01 0.000 0.4176 0.9000 0.9000 0.39 1 1 1.7E-02

15 : -4.56E+02 2.25E-01 0.000 0.5300 0.9000 0.9000 0.47 1 1 1.2E-02

16 : -4.87E+02 8.19E-02 0.000 0.3637 0.9000 0.9000 0.64 1 1 5.6E-03

17 : -5.00E+02 3.65E-02 0.000 0.4455 0.9000 0.9000 0.79 1 1 2.8E-03

18 : -5.09E+02 1.11E-02 0.000 0.3053 0.9000 0.9000 0.90 1 1 9.4E-04

19 : -5.12E+02 3.43E-03 0.000 0.3078 0.9000 0.9000 0.95 1 1 3.0E-04

20 : -5.13E+02 3.06E-04 0.000 0.0894 0.9900 0.9900 0.98 1 1 2.7E-05

21 : -5.13E+02 7.36E-05 0.000 0.2402 0.9000 0.9000 1.00 1 1 6.6E-06

22 : -5.13E+02 2.61E-07 0.294 0.0035 0.9990 0.9990 1.00 1 1 2.3E-08

23 : -5.13E+02 5.16E-08 0.000 0.1978 0.9000 0.9000 1.00 2 2 4.6E-09

24 : -5.13E+02 1.39E-09 0.000 0.0269 0.9900 0.9900 1.00 2 2 1.2E-10

iter seconds digits c*x b*y

24 0.8 10.3 -5.1298252214e+02 -5.1298252217e+02

|Ax-b| = 2.8e-12, [Ay-c]_+ = 1.1E-09, |x|= 5.1e+02, |y|= 9.8e+02

Detailed timing (sec)

Pre IPM Post

4.447E-02 5.670E-01 7.121E-03

Max-norms: ||b||=1, ||c|| = 22500,

Cholesky |add|=0, |skip| = 0, ||L.L|| = 362.833.

Decentralized SDP problem solved!

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

Decentralized ideal feedback: Eigenvalues

2.4. DECLMI 81

Decentralized lossy (robust)

tic

obj = obj.solve_dec_lossy_lmi();

CPUtime.dec_lossy = toc;

Solving dec. lossy SDP problem...

SeDuMi 1.3 by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003.

Alg = 2: xz-corrector, theta = 0.250, beta = 0.500

eqs m = 37, order n = 941, dim = 19333, blocks = 54

nnz(A) = 6056 + 0, nnz(ADA) = 1273, nnz(L) = 691

it : b*y gap delta rate t/tP* t/tD* feas cg cg prec

0 : 1.78E+06 0.000

1 : -1.93E+04 4.80E+05 0.000 0.2692 0.9000 0.9000 1.01 1 1 1.0E+02

2 : -3.01E+04 4.34E+04 0.000 0.0906 0.9900 0.9900 1.14 1 1 9.3E+00

3 : -2.40E+04 1.34E+04 0.000 0.3093 0.9000 0.9000 1.36 1 1 3.3E+00

4 : -6.26E+03 4.85E+03 0.000 0.3608 0.9000 0.9000 2.43 1 1 7.9E-01

5 : -7.24E+02 1.03E+03 0.000 0.2117 0.9000 0.9000 1.99 1 1 4.1E-01

6 : -3.94E+02 5.58E+02 0.000 0.5441 0.9000 0.9000 1.13 1 1 3.7E-01

7 : -3.69E+02 4.89E+02 0.000 0.8763 0.9000 0.9000 1.01 1 1 3.5E-01

8 : -4.46E+02 3.58E+02 0.000 0.7310 0.9000 0.9000 0.55 1 1 2.7E-01

9 : -5.19E+02 2.28E+02 0.000 0.6362 0.9000 0.9000 0.56 1 1 1.9E-01

10 : -5.62E+02 1.46E+02 0.000 0.6404 0.9000 0.9000 0.64 1 1 1.3E-01

11 : -5.74E+02 1.30E+02 0.133 0.8925 0.9000 0.9000 0.60 1 1 1.2E-01

12 : -6.23E+02 8.46E+01 0.000 0.6501 0.9000 0.9000 0.35 1 1 1.1E-01

13 : -6.76E+02 5.40E+01 0.000 0.6387 0.9000 0.9000 0.29 1 1 8.7E-02

14 : -7.84E+02 1.85E+01 0.000 0.3432 0.9000 0.9000 0.54 1 1 3.5E-02

15 : -8.24E+02 8.69E+00 0.000 0.4686 0.9000 0.9000 0.67 1 1 2.0E-02

16 : -8.48E+02 4.24E+00 0.000 0.4886 0.9000 0.9000 0.78 1 1 1.1E-02

17 : -8.69E+02 9.78E-01 0.000 0.2305 0.9000 0.9000 0.89 1 1 2.7E-03

18 : -8.75E+02 2.06E-01 0.000 0.2101 0.9000 0.9000 0.96 1 1 5.8E-04

19 : -8.76E+02 5.68E-02 0.000 0.2762 0.9000 0.9000 0.99 1 1 1.6E-04

20 : -8.76E+02 1.91E-02 0.000 0.3359 0.9000 0.9000 1.00 1 1 5.5E-05

21 : -8.76E+02 4.35E-03 0.000 0.2283 0.9000 0.9000 1.00 1 1 1.2E-05

22 : -8.76E+02 8.86E-04 0.000 0.2035 0.9000 0.9000 1.00 1 1 2.5E-06

23 : -8.76E+02 6.95E-05 0.403 0.0785 0.9900 0.9900 1.00 1 3 2.0E-07

24 : -8.76E+02 1.73E-05 0.000 0.2487 0.9000 0.9000 1.00 8 8 5.0E-08

25 : -8.76E+02 1.67E-06 0.434 0.0968 0.9900 0.9900 1.00 15 17 4.8E-09

26 : -8.76E+02 3.75E-07 0.000 0.2239 0.9000 0.9000 1.00 26 26 1.1E-09

27 : -8.76E+02 3.52E-07 0.000 0.9386 0.9000 0.9000 1.00 51 51 1.0E-09

28 : -8.76E+02 1.08E-07 0.000 0.3072 0.9000 0.9000 1.00 51 51 3.1E-10

iter seconds digits c*x b*y

28 13.7 9.4 -8.7629587675e+02 -8.7629587712e+02

|Ax-b| = 2.6e-11, [Ay-c]_+ = 9.6E-10, |x|= 8.8e+02, |y|= 1.4e+03

Detailed timing (sec)

Pre IPM Post

2.930E-02 7.203E+00 8.459E-03

Max-norms: ||b||=1, ||c|| = 22500,

Cholesky |add|=4, |skip| = 6, ||L.L|| = 33929.7.

Closed loop max eig: 0.76382

Closed loop max eig: 0.76244

82 CHAPTER 2. EXAMPLES

Closed loop max eig: 0.76016

Closed loop max eig: 0.75831

Closed loop max eig: 0.76902

Closed loop max eig: 0.76785

Closed loop max eig: 0.76324

Closed loop max eig: 0.76251

Closed loop max eig: 0.76201

Closed loop max eig: 0.76155

Closed loop max eig: 0.7594

Closed loop max eig: 0.75854

Closed loop max eig: 0.77144

Closed loop max eig: 0.77039

Closed loop max eig: 0.76748

Closed loop max eig: 0.76679

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

Decentralized lossy feedback: Eigenvalues

Decentralized stochastic

tic

obj = obj.solve_dec_stoch_lmi();

CPUtime.dec_stoch = toc;

Solving decentralized stoch. SDP problem...

SeDuMi 1.3 by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003.

2.4. DECLMI 83

Alg = 2: xz-corrector, theta = 0.250, beta = 0.500

Put 2 free variables in a quadratic cone

eqs m = 47, order n = 758, dim = 226511, blocks = 13

nnz(A) = 10685 + 0, nnz(ADA) = 2029, nnz(L) = 1038

it : b*y gap delta rate t/tP* t/tD* feas cg cg prec

0 : 5.13E+01 0.000

1 : -9.89E+03 1.44E+01 0.000 0.2810 0.9000 0.9000 -0.72 1 1 2.4E+02

2 : -8.93E+03 7.30E+00 0.000 0.5066 0.9000 0.9000 -0.60 1 1 2.1E+02

3 : -8.68E+03 5.00E+00 0.000 0.6848 0.9000 0.9000 -0.49 1 1 1.9E+02

4 : -7.37E+03 2.50E+00 0.000 0.4997 0.9000 0.9000 -0.42 1 1 1.5E+02

5 : -5.18E+03 8.68E-01 0.000 0.3475 0.9000 0.9000 -0.25 1 1 9.3E+01

6 : -3.00E+03 2.08E-01 0.000 0.2397 0.9000 0.9000 0.05 1 1 3.7E+01

7 : -1.72E+03 6.69E-03 0.000 0.0322 0.9900 0.9900 0.46 1 1 1.7E+00

8 : -1.64E+03 1.37E-04 0.000 0.0204 0.9900 0.9900 0.98 1 1 3.4E-02

9 : -1.10E+03 3.39E-05 0.000 0.2479 0.9000 0.9000 1.68 1 1 5.7E-03

10 : -9.14E+02 1.48E-05 0.000 0.4378 0.9000 0.9000 1.61 1 1 2.1E-03

11 : -8.84E+02 6.51E-06 0.000 0.4386 0.9000 0.9000 1.15 1 1 8.9E-04

12 : -8.79E+02 2.31E-06 0.000 0.3544 0.9000 0.9000 1.03 1 1 3.1E-04

13 : -8.76E+02 1.95E-07 0.000 0.0846 0.9900 0.9900 1.01 1 1 2.6E-05

14 : -8.76E+02 9.14E-09 0.000 0.0468 0.9900 0.9900 1.00 1 1 1.2E-06

15 : -8.76E+02 7.45E-10 0.000 0.0815 0.9900 0.9900 1.00 1 1 1.0E-07

16 : -8.76E+02 6.33E-11 0.000 0.0850 0.9900 0.9900 1.00 2 2 8.6E-09

17 : -8.76E+02 3.35E-12 0.142 0.0530 0.9900 0.9900 1.00 3 3 4.5E-10

iter seconds digits c*x b*y

17 50.6 8.9 -8.7629588173e+02 -8.7629588070e+02

|Ax-b| = 3.2e-07, [Ay-c]_+ = 1.4E-11, |x|= 5.3e+04, |y|= 1.7e+03

Detailed timing (sec)

Pre IPM Post

6.146E-02 2.680E+01 1.172E-01

Max-norms: ||b||=1000, ||c|| = 1.752360e+01,

Cholesky |add|=0, |skip| = 0, ||L.L|| = 26679.7.

Decentralized stoch. SDP problem solved!

84 CHAPTER 2. EXAMPLES

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

Decentralized stochastic feedback: Eigenvalues

Simulation

Random initial state in X0

x0 =[

8.3272

5.7953

7.2282

8.6640

5.8317

6.6488

8.1784

6.5376];

Simulation length

Tsim = 50;

Number of simulations to be carried out

Nsim = 50;

For a proper comparison, a sequence of states and emissions of the Markov chain model is stored.

2.4. DECLMI 85

load Statechange_paper

load Randvals_paper

Sim = [];

for iter=1:Nsim

Generate realizations of Markov chain

statechange = Statechange(1,:,iter);

randvals = Randvals(1,:,iter);

Initial Markov chain state

initialstate = 1;

Compute sequence of Markov chain states

trc = cumsum(obj.Mc.T,2);

ec = cumsum(obj.Mc.E,2);

currentstate = initialstate;

numStates = size(obj.Mc.T,1);

numEmissions = size(obj.Mc.E,2);

for i = 1:Tsim

Calculate state transition

stateVal = statechange(i);

state = 1;

for innerState = numStates-1:-1:1

if stateVal > trc(currentstate,innerState)

state = innerState + 1;

break

end

end

Calculate emission

val = randvals(i);

emit = 1;

for inner = numEmissions-1:-1:1

if val > ec(state,inner)

emit = inner + 1;

break

end

end

Add values and states to output

seq(i) = emit;

states(i) = state;

currentstate = state;

end

86 CHAPTER 2. EXAMPLES

Get controllers gains from decLMI obj

Kc=obj.K.ci;

Kd=obj.K.di;

Kl=obj.K.dl;

Ks=obj.K.ds;

Init states, inputs, state norms and input norms

Xc = x0;

Xd = x0;

Xn = x0;

Xl = x0;

Xs = x0;

Uc = [];

Ud = [];

Un = [];

Ul = [];

Us = [];

Xcnorm = [];

Xdnorm = [];

Xnnorm = [];

Xlnorm = [];

Xsnorm = [];

Ucnorm = [];

Udnorm = [];

Unnorm = [];

Ulnorm = [];

Usnorm = [];

Perform current simulation

for i=1:Tsim

Centralized

Uc(:,i) = Kc*Xc(:,i);

Xc(:,i+1) = A*Xc(:,i) + B*Uc(:,i);

Xcnorm(i) = norm(Xc(:,i));

Ucnorm(i) = norm(Uc(:,i));

Decentralized with ideal network

Ud(:,i) = Kd*Xd(:,i);

Xd(:,i+1) = A*Xd(:,i) + B*Ud(:,i);

Xdnorm(i) = norm(Xd(:,i));

Udnorm(i) = norm(Ud(:,i));

Decentralized with lossy network and robust stability

2.4. DECLMI 87

Ul(:,i) = Kl{seq(i)}*Xl(:,i);

Xl(:,i+1) = A*Xl(:,i) + B*Ul(:,i);

Xlnorm(i) = norm(Xl(:,i));

Ulnorm(i) = norm(Ul(:,i));

Decentralized with lossy network and stoch. stability

Us(:,i) = Ks{seq(i),states(i)}*Xs(:,i);

Xs(:,i+1) = A*Xs(:,i) + B*Us(:,i);

Xsnorm(i) = norm(Xs(:,i));

Usnorm(i) = norm(Us(:,i));

end

Performance indices initialization

Jc = [];

Jd = [];

Jl = [];

Js = [];

The used performance index is a sum over the entire simulation horizon of the state and input
norms weighted by the Riccati equation weights.

for i=1:Tsim

Jc(i) = sqrt(Xc(:,i)’*Qx*Xc(:,i) + Uc(:,i)’*Qu*Uc(:,i));

Jd(i) = sqrt(Xd(:,i)’*Qx*Xd(:,i) + Ud(:,i)’*Qu*Ud(:,i));

Jl(i) = sqrt(Xl(:,i)’*Qx*Xl(:,i) + Ul(:,i)’*Qu*Ul(:,i));

Js(i) = sqrt(Xs(:,i)’*Qx*Xs(:,i) + Us(:,i)’*Qu*Us(:,i));

end

store the current simulation results

Sim.Jc(iter) = sum(Jc);

Sim.Jd(iter) = sum(Jd);

Sim.Jl(iter) = sum(Jl);

Sim.Js(iter) = sum(Js);

end

disp([’Global results over ’ num2str(Nsim) ’ simulations: ’]);

disp([’Central. ideal performance: ’,num2str(sum(Sim.Jc))]);

disp([’Decentr. ideal performance: ’,num2str(sum(Sim.Jd))]);

disp([’Decentr. lossy performance: ’,num2str(sum(Sim.Jl))]);

disp([’Decentr. stoch performance: ’,num2str(sum(Sim.Js))]);

disp([’Central. ideal performance AVG: ’,num2str(mean(Sim.Jc))]);

disp([’Decentr. ideal performance AVG: ’,num2str(mean(Sim.Jd))]);

disp([’Decentr. lossy performance AVG: ’,num2str(mean(Sim.Jl))]);

disp([’Decentr. stoch performance AVG: ’,num2str(mean(Sim.Js))]);

disp([’Central. ideal performance STD: ’,num2str(std(Sim.Jc))]);

disp([’Decentr. ideal performance STD: ’,num2str(std(Sim.Jd))]);

disp([’Decentr. lossy performance STD: ’,num2str(std(Sim.Jl))]);

88 CHAPTER 2. EXAMPLES

disp([’Decentr. stoch performance STD: ’,num2str(std(Sim.Js))]);

CPUtime

Global results over 50 simulations:

Central. ideal performance: 2048.6692

Decentr. ideal performance: 2251.9299

Decentr. lossy performance: 2487.4078

Decentr. stoch performance: 2351.7918

Central. ideal performance AVG: 40.9734

Decentr. ideal performance AVG: 45.0386

Decentr. lossy performance AVG: 49.7482

Decentr. stoch performance AVG: 47.0358

Central. ideal performance STD: 7.1776e-15

Decentr. ideal performance STD: 4.3065e-14

Decentr. lossy performance STD: 1.5547

Decentr. stoch performance STD: 1.4408

CPUtime =

centralized: 4.2254

dec_ideal: 1.1811

dec_lossy: 10.3414

dec_stoch: 32.3619

Conclusions

Performance evaluation

As expected, the best performance is achieved by the centralized ideal controller, as it can use all
the state measurements for all actuators at all time steps.

However, the decentralized ideal controller achieves a performance which is only 10% higher than
the ideal centralized one, while using much less communications between sensors and actuators.

A robustly stabilizing controller has been found also for the case where some of the links are subject
to possible packet dropouts. In this case constraints are fulfilled at every time step, regardless of
the occurrence of the dropouts in the network.

Exploiting a stochastic model of the packet dropouts, a stochastic controller has been computed
which obtaines an improvement on the performance index of around 6% with respect to the robust
control scheme.

2.5 dlincon

DMPC usage example
The main features of the Decentralized MPC class are showed in this file.

2.5. DLINCON 89

Contents

• Example description
• Example setup
• Comment to the results

Example description

The following example aims at showing the usage of the class dlincon in a simple but complete
control problem in which the plant has some a relevant degree of decoupling between its states.

close all

clc

%

% The plant we are about to control is the LTI discrete-time system below

Ts=.1;

sys=ss([1.1 .1 0;.2 .3 0;0 .2 1.3],[1 0;0 0.1;0 1],eye(3),zeros(3,2),Ts);

%

% Nx, Nu and Ny are number of states, input and outputs, respectively

[Nx,Nu]=size(sys.B);

Ny=size(sys.c,1);

%

% Engineering insight suggest the following decentralization

dec(1).u=[1 2];

dec(1).x=[1 2];

dec(1).y=[1 2];

dec(1).applied=1;

dec(2).u=[1 2];

dec(2).x=[2 3];

dec(2).y=[2 3];

dec(2).applied=2;

Example setup

Below 4 simulations will be performed to show the potential of the class. In order:

• regulator with fixed bounds
• tracking with fixed bounds
• regulator with variant bounds
• tracking with variant bounds

Each simulation shows the behavior of the set of DMPC against the centralized controller that is
used as reference for comparison. Both states and inputs are plotted.

Setup simulation parameters

x_c0=[-0.4286;0.2182;-0.3596];

u_c0=zeros(Nu);

Tsim=1;

for j=1:4

90 CHAPTER 2. EXAMPLES

Steup controllers parameters

if mod(j,2)==0

type=’track’; % even values of j

else

type=’reg’; % odd values of j

end

if strcmp(type,’reg’)

cost.Q=1e1*eye(Nx);

cost.R=eye(Nu);

else

cost.S=1e1*eye(Nx);

cost.T=eye(Nu);

end

interval.N=10;

interval.Nu=5;

[A,B,C,D]=ssdata(sys);

var_bounds=(j>2);

if var_bounds

Nullify influence of static constraint on case of variant bounds. This is not mandatory, it is possible
to have some bounds to be variant and some others to be fixed, and that is currently supported

k=inf;

else

k=.5;

end

limits.umin=-k*ones(Nu,1);

limits.umax=k*ones(Nu,1);

limits.ymin=-k*ones(Ny,1);

limits.ymax=k*ones(Ny,1);

cost.rho=inf;

Dcon = dlincon(sys,type,cost,interval,limits,0,dec,var_bounds);

xx=.1;

range.xmin=-xx*ones(Nx,1);

range.xmax=-range.xmin;

if ~Dcon.var_bounds

if Dcon.stability_test(range,cost)

disp(’Stability test succeded’);

else

disp(’Stability test failed’);

end

end

x_c=x_c0;

x_d=x_c;

u_c=u_c0;

u_d=u_c;

disp(’Start simulation’)

2.5. DLINCON 91

Index exceeds matrix dimensions.

Error in ==> dlincon_example at 51

if mod(j,2)==0

% Setup variant bounds

bounds=[-.2;.2];

for i=2:Dcon.M

bounds=[bounds; [-.2;.2]];

end

% Reference signal

r=[3,3]’;

for i=1:Tsim/Ts

x_c(:,i+1) = A*x_c(:,i) + B*u_c(:,i);

x_d(:,i+1) = A*x_d(:,i) + B*u_d(:,i);

if var_bounds

if mod(j,2)==1

r=zeros(Nx+2*Nu,1);

else

There are only two inputs, hence only 1st and 3rd state components can achieve zero-error con-
vergence. 2*Nu zeros are added because of the variant bound that are mapped as fake outputs.

r=[-.1;0;-.1;zeros(2*Nu,1)];

end

[u_c(:,i+1) Dcon] = Deval(Dcon,’global’,[x_c(:,i+1) ; bounds],r);

[u_d(:,i+1) Dcon] = Deval(Dcon,’Dglobal’,[x_d(:,i+1) ; bounds],r);

if i==ceil(Tsim/Ts/2)

% Vary the variant bounds

bounds=bounds+.1;

end

else

if mod(j,2)==1

r=zeros(Nx,1);

else

There are only two inputs, hence only 1st and 3rd state components can achieve zero-error con-
vergence.

r=[-.1;0;-.1];

end

[u_c(:,i+1) Dcon] = Deval(Dcon,’global’,x_c(:,i+1),r);

[u_d(:,i+1) Dcon] = Deval(Dcon,’Dglobal’,x_d(:,i+1),r);

end

end

92 CHAPTER 2. EXAMPLES

% Plot showing in red, green and blue color the first, second and third

% state components, respectively. Continuous lines depicts centralized

% controller trajectories while dash ones show decentralized set of

% controllers behavior.

figure;

t=0:Ts:Tsim;

subplot(2,1,1)

plot(t,x_c);

hold on

plot(t,x_d,’--’);

hold off

title(’States: cent(-), dec(--)’);

subplot(2,1,2)

plot(t,u_c);

hold on

plot(t,u_d,’--’);

hold off

title(’Inputs: cent(-), dec(--)’);

if j<4

disp(’Press any key to test next configuration’);

pause();

end

end

Comment to the results

Figures 1 and 3 depicts the regulator configuration with fixed and time varying bounds, respec-
tively. Convergence in the second case is slower due to the more restrictive bound imposed.
However in both cases convergence is achieved by both the centralized and set of decentralized
controllers.

Figure 2 and 4 depicts the reference tracking configuration with fixed and time varying bounds,
respectively. The more restrictive variant bounds make the latter case to need more time to
achieve convergence with respect to the fixed bounds case. In particular figure 4 show the main
difference between the centralized and decentralized controllers, that is the longer transient in the
decentralized case.

2.6 eampc

Contents

• Energy-Aware MPC Demo
• Plant model
• Network model
• Controller design
• Simulation: energy-aware MPC vs standard MPC
• Results

2.6. EAMPC 93

• Conclusions

Energy-Aware MPC Demo

This demo illustrates the usage of the EAMPC class on a 2-states, 1-input linear system subject
to state and output noise. Several sensor nodes are used for disturbance rejection purposes. We
assume that every node measures the full state vector, corrupted by an additive disturbance. At
every time step, once every node got a measurement, an estimated state value is obtained by taking
the mean value of the outputs. This estimation is transmitted to the controller in accordance with
a threshold-based policy, where the estimated state is compared with a predicted value which has
been precomputed by the controller and transmitted beforehand to the sensors. This policy is
inteded to reduce the number of communications between controller and sensors, hence saving
sensor nodes battery. In this example the energy-aware MPC is compared with a traditional MPC
scheme, where the measurements are simply transmitted to the controller at every time step, and
no predictions are computed and transmitted by the controller.

by D. Bernardini, 2010.

close all

clc

Plant model

State-space matrices of the discrete-time LTI system

x(k + 1) = Ax(k) +Bu(k)

Plant.A = [.21 -.39; -.39 .82];

Plant.B = [0 1]’;

Network model

specify parameters for sensor nodes

Net.nodes = 3; % number of wireless sensor nodes

Net.th = .05*ones(2,1); % transmission thresholds

Net.Ne = 10; % estimation horizon

Controller design

% element-wise constraints on output, input, and input rate

Limits.ymin = [-2 -2]’; % min output

Limits.ymax = [2 2]’; % max output

Limits.umin = -1; % min input

94 CHAPTER 2. EXAMPLES

Limits.umax = 1; % max input

Limits.dumin = -.6; % min input rate

Limits.dumax = .6; % max input rate

% weights matrices for MPC objective function

Weights.Qu = .1; % input weight

Weights.Qy = eye(size(Plant.A,1)); % output weight

Weights.Qn = Weights.Qy; % terminal weight

Weights.rho = Inf; % positive weight for soft output constraints

% (if rho=Inf then hard constraints are imposed)

% other parameters

Params.pnorm = 2; % norm used in the objective function (1, 2 or Inf).

Params.N = 10; % prediction horizon

Params.Nc = Params.N; % control horizon

% build EAMPC object

EAobj = eampc(Plant,Net,Limits,Weights,Params);

% plot explicit MPC partition

Options = mpt_options;

Options.shade = .5;

Options.samecolors = 1;

figure

plot(EAobj.Ctrl.Pn,Options);

xlabel ’x_1’

ylabel ’x_2’

zlabel ’u_{prev}’

axis(1.4*[Limits.ymin(1) Limits.ymax(1) ...

Limits.ymin(2) Limits.ymax(2) Limits.umin Limits.umax]);

title(’Explicit MPC partition’)

box on

IBM ILOG License Manager: "IBM ILOG Optimization Suite for Academic Initiative" is accessing CPLEX looking for available solvers...

Warning: mpt_init: No supported MIQP solver available on your system.

MPT toolbox 2.6.3 initialized...

Copyright (C) 2003-2006 by M. Kvasnica, P. Grieder and M. Baotic

Send bug reports, questions or comments to mpt@control.ee.ethz.ch

For news, visit the MPT web page at http://control.ee.ethz.ch/~mpt/

LP solver: CPLEX-IBM

QP solver: CPLEX-IBM

MILP solver: CPLEX-IBM

MIQP solver: CPLEX-IBM

Vertex enumeration: CDD

Run ’mpt_studio’ to start the GUI. Run ’mpt_setup’ to set global parameters.

mpt_mpqp: 1 regions

-> Generated 1 partition.

Solution consists of 1 regions

2.6. EAMPC 95

1 regions with 1 different control laws

control law # 1, 1 region --> 1 region

controller partition reduced to 1 regions

Plotting...

Simulation: energy-aware MPC vs standard MPC

The energy-aware MPC controller is compared with a standard MPC control scheme, where at
every time step measurements are transmitted to the controller regardless to the threshold logic,
and no predictions are transmitted to the sensors.

The two controllers are simulated in closed-loop with the LTI system

x(k + 1) = Ax(k) +Bu(k) + w(k)

where |w(k)| ≤ wmax, ∀k. Moreover, measurements are affected by an additive error, i.e.,

|yi(k) = x(k) + vi(k)|

for all i = 1, 2, ...,Net.nodes, where |yi| is the output measured by the i-th node, and |vi(k)| ≤
vmax, for all k, i.

96 CHAPTER 2. EXAMPLES

% build EAMPC object for standard MPC

MPCobj = EAobj; % copy EAMPC object

MPCobj.Net.th = zeros(MPCobj.ny,1); % set thresholds to zero

% simulation length

Tsteps = 20;

% disturbance realizations

loadNoise = 1; % 0: pick random noise, 1: load noise data form Noise.mat

if loadNoise==0

% additive disturbance bounds

wmax = [.03 .03]’;

% output noise bounds for each output and each node

vmax = kron([.06 .06]’,ones(1,Net.nodes));

% additive disturbance realizations

W = diag(2*wmax)*rand(EAobj.ny,Tsteps)-wmax*ones(1,Tsteps);

% output noise realizations

V = zeros(EAobj.ny,EAobj.Net.nodes,Tsteps);

for j=1:EAobj.Net.nodes

V(:,j,:) = diag(2*vmax(:,j))*rand(EAobj.ny,Tsteps) ...

-kron(ones(1,Tsteps),vmax(:,j));

end

% initial state (randomly picked in the feasible state set)

vert = extreme(projection(EAobj.Ctrl.Pfinal,1:EAobj.ny));

comb = rand(size(vert,1),1);

comb = comb/sum(comb);

x0 = (comb’*vert)’;

save Noise wmax vmax W V x0

else

load Noise.mat

end

% init energy-aware MPC simluation variables

X = x0; % state

Xestim = []; % estimated state

U = []; % input

Uprev = zeros(EAobj.nu,1); % previous input

J = []; % experimental cost function

EAobj = EAobj.init_sim(); % init simulation data

% init standard MPC simluation variables

XX = x0; % state

XXestim = []; % estimated state

UU = []; % input

UUprev = zeros(MPCobj.nu,1); % previous input

JJ = []; % experimental cost function

MPCobj = MPCobj.init_sim(); % init simulation data

% compute first sequence of output predictions and transmit them to sensors

2.6. EAMPC 97

% (we assume that the initial state is known)

EAobj = EAobj.send_predictions(X,Uprev);

MPCobj = MPCobj.send_predictions(XX,UUprev);

% note: since MPCobj.Net.th = 0, predictions are not actually transmitted here

% run simulation for k=1,2,...,Tsteps

for k=1:Tsteps

% measurements acquisition

[xestim,EAobj] = EAobj.get_measurements(X(:,end),V(:,:,k));

Xestim(:,end+1) = xestim;

[xestim,MPCobj] = MPCobj.get_measurements(XX(:,end),V(:,:,k));

XXestim(:,end+1) = xestim;

% compute the control law

U(:,end+1) = EAobj.get_input(Xestim(:,end),Uprev);

UU(:,end+1) = MPCobj.get_input(XXestim(:,end),UUprev);

% if needed, compute new predictions

EAobj = EAobj.send_predictions(Xestim(:,end),Uprev);

MPCobj = MPCobj.send_predictions(XXestim(:,end),UUprev);

% evaluate evperimental costs

if EAobj.Params.pnorm == 2

J(k) = X(:,end)’*Weights.Qy*X(:,end) + ...

U(:,end)’*Weights.Qu*U(:,end);

else

J(k) = norm(Weights.Qy*X(:,end),EAobj.Params.pnorm) + ...

norm(Weights.Qu*U(:,end),EAobj.Params.pnorm);

end

if MPCobj.Params.pnorm == 2

JJ(k) = XX(:,end)’*Weights.Qy*XX(:,end) + ...

UU(:,end)’*Weights.Qu*UU(:,end);

else

JJ(k) = norm(Weights.Qy*XX(:,end),MPCobj.Params.pnorm) + ...

norm(Weights.Qu*UU(:,end),MPCobj.Params.pnorm);

end

% state evolution

X(:,end+1) = Plant.A*X(:,end) + Plant.B*U(:,end) + W(:,k);

XX(:,end+1) = Plant.A*XX(:,end) + Plant.B*UU(:,end) + W(:,k);

% update previous input

Uprev = U(:,end);

UUprev = UU(:,end);

end

Results

% plot state trajectory

figure;

98 CHAPTER 2. EXAMPLES

subplot(2,1,1);

plot(1:Tsteps,X(1,1:Tsteps),’b’,1:Tsteps,XX(1,1:Tsteps),’r--’,’LineWidth’,2);

title(’Energy-aware vs. standard MPC: state 1’)

ylabel ’x1’

legend(’EA-MPC’,’std. MPC’,’Location’,’Best’)

grid on

subplot(2,1,2);

plot(1:Tsteps,X(2,1:Tsteps),’b’,1:Tsteps,XX(2,1:Tsteps),’r--’,’LineWidth’,2);

title(’Energy-aware vs. standard MPC: state 2’)

ylabel ’x2’

legend(’EA-MPC’,’std. MPC’,’Location’,’Best’)

grid on

% plot input trajectory

figure

stairs(1:Tsteps,U(1,1:Tsteps),’b’,’LineWidth’,2)

hold on

stairs(1:Tsteps,UU(1,1:Tsteps),’r--’,’LineWidth’,2)

title(’Energy-aware vs. standard MPC: control move’)

ylabel ’u1’

legend(’EA-MPC’,’std. MPC’,’Location’,’Best’)

grid on

% plot WSN activity

figure

stairs(0:Tsteps,[0 EAobj.Sim.tx(1:Tsteps)]+1.5,’b’,’LineWidth’,1.5);

hold on

stairs(0:Tsteps,[0 EAobj.Sim.rx(1:Tsteps)],’r’,’LineWidth’,1.5);

set(gca,’Ytick’,[0 1 1.5 2.5],’YTickLabel’,{’0’ ’1’ ’0’ ’1’});

title(’Sensor-to-controller transmissions: time plots’)

xlabel ’Sampling instants’

ylabel ’Transmissions’

legend(’out’,’in’,’Location’,’Best’)

grid on

% plot pie graph for transmission data

figure

tx_perc = 100*sum(EAobj.Sim.tx)/Tsteps;

rx_perc = 100*sum(EAobj.Sim.rx)/Tsteps;

free_perc = 100-tx_perc-rx_perc;

pie([tx_perc free_perc rx_perc],[0 1 0], ...

{[’Outgoing: ’ num2str(tx_perc,’%3.1f’) ’%’], ...

[’No transmissions: ’ num2str(free_perc,’%3.1f’) ’%’], ...

[’Incoming: ’ num2str(rx_perc,’%3.1f’) ’%’]});

title(’Sensor-to-controller transmissions: overall statistics’)

% print experimental costs

sumJ = sum(J);

sumJJ = sum(JJ);

fprintf(’\n== Results for Energy-Aware MPC:\n’);

fprintf(’threshold TH = [%.2f %.2f]’’, experimental cost J = %.3f.\n’, ...

EAobj.Net.th’,sumJ);

fprintf(’\n== Results for standard MPC:\n’);

fprintf(’threshold TH = [%.2f %.2f]’’, experimental cost J = %.3f.\n’, ...

2.6. EAMPC 99

MPCobj.Net.th’,sumJJ);

fprintf(’\n== Energy-Aware vs standard MPC: transmission savings = %.2f%%\n’, ...

free_perc);

fprintf(’\n== Energy-Aware vs standard MPC: performance ratio = %.2f%%\n’, ...

(sumJ/sumJJ-1)*100);

== Results for Energy-Aware MPC:

threshold TH = [0.05 0.05]’, experimental cost J = 0.441.

== Results for standard MPC:

threshold TH = [0.00 0.00]’, experimental cost J = 0.432.

== Energy-Aware vs standard MPC: transmission savings = 60.00%

== Energy-Aware vs standard MPC: performance ratio = 1.98%

0 2 4 6 8 10 12 14 16 18 20
−0.8

−0.6

−0.4

−0.2

0

0.2
Energy−aware vs. standard MPC: state 1

x
1

EA−MPC

std. MPC

0 2 4 6 8 10 12 14 16 18 20
−0.05

0

0.05

0.1

0.15
Energy−aware vs. standard MPC: state 2

x
2

EA−MPC

std. MPC

100 CHAPTER 2. EXAMPLES

0 2 4 6 8 10 12 14 16 18 20
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05
Energy−aware vs. standard MPC: control move

u
1

EA−MPC

std. MPC

0 2 4 6 8 10 12 14 16 18 20
0

1

0

1
Sensor−to−controller transmissions: time plots

Sampling instants

T
ra

n
s
m

is
s
io

n
s

out

in

2.7. HIMPC 101

Outgoing: 15.0%

No transmissions: 60.0%

Incoming: 25.0%

Sensor−to−controller transmissions: overall statistics

Conclusions

In the proposed example, the energy-aware MPC scheme provided a reduction of 60% in the
number of transmissions between the controller and the sensor nodes. This energy savings have
been obtained with a small loss in the performance index (around 2%), with respect to a traditional
MPC scheme. Indeed, the threshold values Net.th need to be properly tuned, especially in function
of the magnitude of the disturbances, in order to obtain a valuable reduction in the transmission
rate and also achieve a satisfying performance.

2.7 himpc

Example file for class HiMPC

102 CHAPTER 2. EXAMPLES

In this demo we use the HiMPC toolbox to show how to build a decentralized hierarchical controller
for linear systems subject to linear constraints on input and output variables.

Contents

• Description
• Simulation Example
• Plant model
• Element-wise state constraints
• Coupled constraints
• The decentralization of the model is defined as:
• Truncated DCgain
• Pre-simulation considerations
• Higher level controller setup
• Centralized HiMPC for comparison
• Simulation
• Centralized
• Computation of performance indices
• Considerations

Description

For this demo we use the following system consting of four balls and seven springs.

The process is composed by four masses moving vertically, each one connected by a spring to
a fixed ceiling, subject to damping due to viscous friction with the environment, and connected
to its neighbor mass by another spring. An input force u [Nm] can be applied to each mass by
the lower-level controller. The state of the system is the vector x collecting the vertical positions
and accelerations of the masses, while the output y is the vector that collects the positions. The
constrained masses-springs system is an extension of the example presented [1]. However in this

2.7. HIMPC 103

demo both layers have a decentralized structure, in particular four controllers at the higher level
independently process the user provided references and command their respective actuators.

The final objective of this class functions is to compute the maximum reference variation, element-
wise, that the higher controller can apply in order to guarantee the system stability while fulfilling
the constraints. Such goal is achieved by ensuring that the system state vector starting in a
Maximal Output Admissible Set (MOAS) will be in a new MOAS at the next execution of the
higher level controller. The MOAS is obtained by tightening the output constraints by a fixed
value, ∆y that is a tuning knob of the approach. The computation of maximum reference variation
is an optimization problem, which can be conveniently casted as a Mixed Integer Linear Program
(MILP), and solved via suitable solvers (we strongly suggest IBM, former ILOG, Cplex).

The simulations are performed using at the higher layer a set of independent hierarchical MPC
(HiMPC) which adopt a linear formulation. The upper-layer controllers must embed constraints
on the generated references, to ensure stability and constraint satisfaction. In this example we
impose constraints on plant outputs, namely the positions of the balls depicted in figure.

[1] D. Barcelli, A. Bemporad and G. Ripaccioli, Hierarchical MPC controller design for LTI sys-
tems, 49th Control and Decision Conference, Atlanta, Georgia, USA, 2010.

Simulation Example

close all

clc

% Computing data is very time consiming, set the variable below to 0 in

% case you want to recompute

precomputed_data=0;

showPlot=1;

Plant model

Sample time

TL=.25;

Creates the closed-loop model of the plant with the lower layer controller

[sys N]=buildModelFriction(TL);

[A B C D] = ssdata(sys);

Number of states and inputs respectively

[Nx Ny]=size(B);

%

104 CHAPTER 2. EXAMPLES

Element-wise state constraints

The output constraints have to be expressed in state coordinates in order to compute the MOAS.
To avoid numerical problems the state constraints polytope is bounded, hence the speed is limited
to 10 [m/s]

Xcon.min=[];

for i=1:N,Xcon.min=[Xcon.min;-.3;-10];end

Xcon.max=[];

for i=1:N,Xcon.max=[Xcon.max;1;10];end

%

Coupled constraints

mass #2 position is forbidden to go below mass #1 position more than 0.3

coupledCons(1).H=[-1 0 1 0];

coupledCons(1).K=[0.3];

coupledCons(2).H=[];

coupledCons(2).K=[];

coupledCons(3).H=[];

coupledCons(3).K=[];

%

The decentralization of the model is defined as:

dec(1).x=1:4;

dec(1).y=1:2;

dec(1).u=1:2;

dec(1).applied=1:2;

dec(2).x=[5 6];

dec(2).y=3;

dec(2).u=3;

dec(2).applied=3;

dec(3).x=[7 8];

dec(3).y=4;

dec(3).u=4;

dec(3).applied=4;

∆k : Tightening of the output admissible set. Tuning knob.

DeltaK{1}=[.3;2;.3;2;.3;2;.3;2;0.12];

DeltaK{2}=[.3;2;.3;2];

DeltaK{3}=[.3;2;.3;2];

2.7. HIMPC 105

Truncated DCgain

In order to have a decentralized structure stabilizing feedback must retain the structure, hence we
simply nulify out-of-structure entries

E=inv(dcgain(sys));

nd=length(dec);

for i=1:nd

% for each subsystem

for h=dec(i).u

for j=setdiff(1:4,dec(i).u)

E(h,j)=0;

end

end

end

sys.B=sys.B*E;

if ~precomputed_data

Create the object, i.e. the HiMPC calss instance

dobj = HiMPC(sys,dec,Xcon,DeltaK,coupledCons);

Compute the MOAS. For this purpose each sub-model is considered independent and subject to
an unknown but bounded disturbance. The disturbance models the influence of the unmodeled
dynamics, i.e. the state components that are not present in that sub-system. The uncertainty
polytope is computed in an exact manner by considering the range of each unmodeled state
component and its influence with respect to state components which belong to the current sub-
model. It follows that the invariant set is actually a Maximal Output Admissible Robust Set.

dobj=dobj.computeMOARS();

Computing disturbance polytope for subsystem 1

Done

Pnoise=

Normalized, minimal representation polytope in R^4

H: [12x4 double]

K: [12x1 double]

normal: 1

minrep: 1

xCheb: [4x1 double]

RCheb: 1.0013e-06

[-0 -0 1 -0.002004] [1.002e-06]

[-0 1 -0 -0.002004] [1.002e-06]

[1 -0 -0 -0.002004] [1.002e-06]

[-0 -0 -1 -0.002004] [1.002e-06]

[-0 -1 -0 -0.002004] [1.002e-06]

[-1 -0 -0 -0.002004] [1.002e-06]

[-1 -4.3455e-19 -8.691e-19 0.002004] x <= [1.002e-06]

106 CHAPTER 2. EXAMPLES

[4.5566e-19 -1 -8.691e-19 0.002004] [1.002e-06]

[9.1132e-19 -4.3455e-19 -1 0.002004] [1.002e-06]

[4.5566e-19 1 -8.691e-19 0.002004] [1.002e-06]

[1 4.5566e-19 -8.691e-19 0.002004] [1.002e-06]

[9.1132e-19 -4.3455e-19 1 0.002004] [1.002e-06]

Computing disturbance polytope for subsystem 2

Done

Pnoise=

Normalized, minimal representation polytope in R^2

H: [4x2 double]

K: [4x1 double]

normal: 1

minrep: 1

xCheb: [2x1 double]

RCheb: 1.0005e-06

[1 -0.001001] [1.001e-06]

[-1 -0.001001] [1.001e-06]

[-1 0.001001] x <= [1.001e-06]

[1 0.001001] [1.001e-06]

Computing disturbance polytope for subsystem 3

Done

Pnoise=

Normalized, minimal representation polytope in R^2

H: [4x2 double]

K: [4x1 double]

normal: 1

minrep: 1

xCheb: [2x1 double]

RCheb: 1.0010e-06

[1 -0.002004] [1.002e-06]

[-1 -0.002004] [1.002e-06]

[-1 0.002004] x <= [1.002e-06]

[1 0.002004] [1.002e-06]

Computing the MOARS for subsystem 1

Oinf=

Normalized, minimal representation polytope in R^4

H: [93x4 double]

K: [93x1 double]

normal: 1

minrep: 1

xCheb: [4x1 double]

RCheb: 0.1511

Done

Computing the MOARS for subsystem 2

2.7. HIMPC 107

Oinf=

Normalized, minimal representation polytope in R^2

H: [28x2 double]

K: [28x1 double]

normal: 1

minrep: 1

xCheb: [2x1 double]

RCheb: 0.2231

[-0.22586 -0.97416] [0.26619]

[0.22586 0.97416] [0.26619]

[-0.2774 -0.96075] [0.25064]

[0.2774 0.96075] [0.25064]

[-0.32786 -0.94473] [0.23894]

[0.32786 0.94473] [0.23894]

[-0.37832 -0.92567] [0.23061]

[0.37832 0.92567] [0.23061]

[-0.42985 -0.9029] [0.22536]

[0.42985 0.9029] [0.22536]

[-0.48352 -0.87533] [0.22307]

[0.48352 0.87533] [0.22307]

[-0.5405 -0.84135] [0.22371]

[0.5405 0.84135] [0.22371]

[-0.602 -0.79849] x <= [0.22742]

[0.602 0.79849] [0.22742]

[-0.6692 -0.74308] [0.23439]

[0.6692 0.74308] [0.23439]

[-0.74282 -0.66949] [0.24485]

[0.74282 0.66949] [0.24485]

[-0.82209 -0.56936] [0.25874]

[0.82209 0.56936] [0.25874]

[-0.90227 -0.43117] [0.27515]

[0.90227 0.43117] [0.27515]

[-0.97014 -0.24254] [0.29104]

[0.97014 0.24254] [0.29104]

[-1 -0] [0.3]

[1 0] [0.3]

Done

Computing the MOARS for subsystem 3

Oinf=

Normalized, minimal representation polytope in R^2

H: [28x2 double]

K: [28x1 double]

normal: 1

minrep: 1

xCheb: [2x1 double]

RCheb: 0.2251

[-0.22586 -0.97416] [0.27129]

[0.22586 0.97416] [0.27129]

[-0.2774 -0.96075] [0.25494]

108 CHAPTER 2. EXAMPLES

[0.2774 0.96075] [0.25494]

[-0.32786 -0.94473] [0.24255]

[0.32786 0.94473] [0.24255]

[-0.37832 -0.92567] [0.23361]

[0.37832 0.92567] [0.23361]

[-0.42984 -0.9029] [0.22784]

[0.42984 0.9029] [0.22784]

[-0.48352 -0.87533] [0.22507]

[0.48352 0.87533] [0.22507]

[-0.5405 -0.84135] [0.22529]

[0.5405 0.84135] [0.22529]

[-0.602 -0.79849] x <= [0.22862]

[0.602 0.79849] [0.22862]

[-0.6692 -0.74308] [0.23526]

[0.6692 0.74308] [0.23526]

[-0.74282 -0.66949] [0.24541]

[0.74282 0.66949] [0.24541]

[-0.82209 -0.56936] [0.25905]

[0.82209 0.56936] [0.25905]

[-0.90227 -0.43117] [0.27526]

[0.90227 0.43117] [0.27526]

[-0.97014 -0.24254] [0.29104]

[0.97014 0.24254] [0.29104]

[-1 -0] [0.3]

[1 0] [0.3]

Done

Plot both the MOAS with (blue) and without (red) the influence of the other sub-models for each
sub-model

dobj.plotMOARS();

Plotting...

PLOT: Problem detected. Try to change value of abs_tol in mpt_init. 1e-7 should be a good value.

PLOT: Problem detected. Most probably extreme point enumeration failed for 76 polytopes...

Try to change value for extreme_solver.

2.7. HIMPC 109

Solve the MILP for values of sample-time ratio from 1 to 50 and, accordingly to the ratio, compute
the maximal allowable ∆r

dobj=dobj.computeDeltaR();

Time needed for the 1-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=7.1713e-05

Time needed for the 2-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=7.2957e-05

Time needed for the 3-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=7.5416e-05

Time needed for the 4-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 5-th problem of the 1 subsystem

110 CHAPTER 2. EXAMPLES

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=8.434e-05

Time needed for the 6-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 7-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00010032

Time needed for the 8-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00011223

Time needed for the 9-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 10-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 11-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 12-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 13-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 14-th problem of the 1 subsystem

2.7. HIMPC 111

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00041293

Time needed for the 15-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.0006755

Time needed for the 16-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.0013508

Time needed for the 17-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.0015762

Time needed for the 18-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.0011374

Time needed for the 19-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.0006694

Time needed for the 20-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00049531

Time needed for the 21-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00040737

Time needed for the 22-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00035672

Time needed for the 23-th problem of the 1 subsystem

112 CHAPTER 2. EXAMPLES

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00032598

Time needed for the 24-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00030749

Time needed for the 25-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00029746

Time needed for the 26-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00029388

Time needed for the 27-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00029574

Time needed for the 28-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00030261

Time needed for the 29-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00031453

Time needed for the 30-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00033189

Time needed for the 31-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00035554

Time needed for the 32-th problem of the 1 subsystem

2.7. HIMPC 113

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00038682

Time needed for the 33-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00042784

Time needed for the 34-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00048182

Time needed for the 35-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00055385

Time needed for the 36-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00065234

Time needed for the 37-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.0039051

Time needed for the 38-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.02138

Time needed for the 39-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.065297

Time needed for the 40-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.16856

Time needed for the 41-th problem of the 1 subsystem

114 CHAPTER 2. EXAMPLES

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

...DeltaR=0

Time needed for the 1-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.000101

Time needed for the 2-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 3-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 4-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 5-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 6-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00012853

Time needed for the 7-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 8-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

2.7. HIMPC 115

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 9-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 10-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 11-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 12-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 13-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 14-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 15-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.050564

Time needed for the 16-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.3395

Time needed for the 17-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

116 CHAPTER 2. EXAMPLES

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.56935

Time needed for the 18-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.56801

Time needed for the 19-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.56647

Time needed for the 20-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.56474

Time needed for the 21-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.58746

Time needed for the 22-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.62624

Time needed for the 23-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.6761

Time needed for the 24-th problem of the 2 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

...DeltaR=0

Time needed for the 1-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

2.7. HIMPC 117

DeltaR=0.000101

Time needed for the 2-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 3-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 4-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 5-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 6-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00012853

Time needed for the 7-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00014132

Time needed for the 8-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00015811

Time needed for the 9-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 10-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

118 CHAPTER 2. EXAMPLES

DeltaR=0

Time needed for the 11-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 12-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 13-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0

Time needed for the 14-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.006773

Time needed for the 15-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.067398

Time needed for the 16-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.40157

Time needed for the 17-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.60822

Time needed for the 18-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.60752

Time needed for the 19-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

2.7. HIMPC 119

DeltaR=0.60673

Time needed for the 20-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.60586

Time needed for the 21-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.62533

Time needed for the 22-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.66263

Time needed for the 23-th problem of the 3 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

...DeltaR=0

Plot both ∆r(N) as a function of N, that is the higher-lower sample times ratio, and ∆r(N)/N
for each sub-model

dobj.plotDeltaR();

else

load dobj_data;

end

120 CHAPTER 2. EXAMPLES

0 20 40 60
0

0.2

0.4

0.6

0.8
DeltaR of 1−th subsystem

0 10 20 30
0

0.2

0.4

0.6

0.8
DeltaR of 2−th subsystem

0 10 20 30
0

0.2

0.4

0.6

0.8
DeltaR of 3−th subsystem

0 20 40 60
0

0.005

0.01

0.015

0.02
DeltaR/N of 1−th subsystem

0 10 20 30
0

0.01

0.02

0.03

0.04
DeltaR/N of 2−th subsystem

0 10 20 30
0

0.01

0.02

0.03

0.04
DeltaR/N of 3−th subsystem

2.7. HIMPC 121

Pre-simulation considerations

The first and the forth sub-models MOAS are completely equivalent as well as the corresponding
∆r(N) and ∆r(N)/N . The same consideration can be extended to the second and third sub-
models. This is motivated by the internal symmetry of both the plant and the decentralization.

Higher level controller setup

In this section we define the higher layer controllers. We propose a model predictive control (MPC)
design strategy for such a layer. The function lincon from the hybrid toolbox is used to perform
that task.

warning off

Centralized HiMPC for comparison

cdec(1).x=1:8;

cdec(1).y=1:4;

cdec(1).u=1:4;

cdec(1).applied=1:4;

ccoupledCons(1).H=[-1 0 1 0 0 0 0 0];

ccoupledCons(1).K=[.3];

cDeltaK{1}=[.3;2;.3;2;.3;2;.3;2;.3;2;.3;2;.3;2;.3;2;0.12];

csys=ss(A,B,C,D,TL);

cdcg=dcgain(csys);

csys.B=csys.B*inv(cdcg);

if ~precomputed_data

cobj = HiMPC(csys,cdec,Xcon,cDeltaK,ccoupledCons);

cobj=cobj.computeMOARS();

cobj=cobj.computeDeltaR();

else

load cobj_data;

end

[sup ind] = max(cobj.DrN{1});

cdrOpt=cobj.Dr{1}(ind);

cTH = ind*TL;

cc=[csys.c;zeros(17,8)];

dd=[csys.d;cobj.Hr{1}*cdcg];

cmodel=ss(A,B,cc,dd,TL);

nDec=length(dec);

dcg={};

for i=1:nDec

High level sample time is chosen guaranteeing the maximal allowable slope for the references, as
the maximum of the ratio ∆r(N)/N

[sup ind] = max(dobj.DrN{i});

drOpt=dobj.Dr{i}(ind);

122 CHAPTER 2. EXAMPLES

compute the Higher level sample-time

TH(i) = ind*TL;

Sub-models definition

Ai=A(dec(i).x,dec(i).x);

Bi=B(dec(i).x,dec(i).u);

Ci=C(dec(i).y,dec(i).x);

Di=D(dec(i).y,dec(i).u);

%[Ai Bi Ci Di]=ssdata(d2d(ss(Ai,Bi,Ci,Di,TL),TH(i)));

%Ai=round(Ai*1e3)/1e3;

%Bi=round(Bi*1e3)/1e3;

nx=length(dec(i).x);

nu=length(dec(i).u);

ny=length(dec(i).y);

State and reference polytopes (MOAS) to be imposed in order to guarantee stability

Ko=dobj.Ko;

Ho=dobj.Ho;

Hx=dobj.Hx;

K=dobj.K;

Hr=dobj.Hr;

Kr=dobj.Kr;

nco(i)=length(Ko{i});

ncu(i)=length(Kr{i});

ncx(i)=length(K{i});

% Ci=[Ci;Ho{i};zeros(ncu(i),nx)];

% Di=[Di;-Ho{i}*Ci(1:ny,:)’*0;Hy{i}];

Ci=[Ci;zeros(ncu(i),nx)];

Di=[Di;Hr{i}];

Controller tuning

sysOld=ss(Ai,Bi,Ci,Di,TL);

model{i}=d2d(sysOld,TH(i));

dcg{i}=dcgain(model{i});

%keyboard

model{i}.d=[D(dec(i).y,dec(i).u);Hr{i}*dcg{i}(nu,nu)];

type=’track’;

MPC setup, ’help lincon’ for more details

cost.S=blkdiag(1e2*eye(ny),1e-3*eye(ncu(i)));

cost.T=1e0*eye(nu);

cost.rho=1e6;

interval.N=10;

interval.Nu=5;

% Compute output constraints (only mass positions)

2.7. HIMPC 123

toOut=[1 0 0 0;0 0 0 0;0 1 0 0;0 0 0 0;0 0 1 0;0 0 0 0;0 0 0 1;0 0 0 0]’;

Ycon.min=toOut*Xcon.min;

Ycon.max=toOut*Xcon.max;

limits.ymin=[Ycon.min(dec(i).y);-inf*ones(ncu(i),1)];

limits.ymax=[Ycon.max(dec(i).y);Kr{i}];

limits.dumin=-drOpt*ones(nu,1);

limits.dumax=drOpt*ones(nu,1);

Controller object creation

L{i}=lincon(model{i},type,cost,interval,limits,’cplex’,1);

Error using ==> chkcost>chkwght at 117

Invalid dimensions of weight COST.Q (required dimension: 4-by-4)

Error in ==> chkcost at 58

w=chkwght(w,n,Name,wdef);

Error in ==> lincon.lincon at 188

[cost,soft]=chkcost(cost,type,nx,nu,ny,costdef,A,B);

Error in ==> himpc_example at 279

L{i}=lincon(model{i},type,cost,interval,limits,’cplex’,1);

end

% Centralized Controller

cmodel=d2d(cmodel,cTH);

type=’track’;

cost.S=blkdiag(1e2*eye(4),1e-3*eye(17));

cost.T=1e0*eye(4);

cost.rho=1e6;

interval.N=10;

interval.Nu=5;

limits.ymin=[Ycon.min;-inf*ones(17,1)];

limits.ymax=[Ycon.max;cobj.Kr{1}];

limits.dumin=-cdrOpt*ones(4,1);

limits.dumax=cdrOpt*ones(4,1);

cL=lincon(cmodel,type,cost,interval,limits,’cplex’,1);

Computing the MOARS for subsystem 1

Oinf=

Normalized, minimal representation polytope in R^8

H: [149x8 double]

K: [149x1 double]

normal: 1

minrep: 1

xCheb: [8x1 double]

RCheb: 0.1582

124 CHAPTER 2. EXAMPLES

Done

Time needed for the 1-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=7.0711e-05

Time needed for the 2-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=7.1269e-05

Time needed for the 3-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=7.2933e-05

Time needed for the 4-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=7.5811e-05

Time needed for the 5-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=8.0004e-05

Time needed for the 6-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=8.4995e-05

Time needed for the 7-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=9.106e-05

Time needed for the 8-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00010262

Time needed for the 9-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

2.7. HIMPC 125

DeltaR=0.00010961

Time needed for the 10-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00012345

Time needed for the 11-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00014194

Time needed for the 12-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00016273

Time needed for the 13-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00018709

Time needed for the 14-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00022042

Time needed for the 15-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00026122

Time needed for the 16-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.0003067

Time needed for the 17-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00034993

Time needed for the 18-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

126 CHAPTER 2. EXAMPLES

DeltaR=0.00037695

Time needed for the 19-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00038188

Time needed for the 20-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00036886

Time needed for the 21-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00034928

Time needed for the 22-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00032952

Time needed for the 23-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.0003118

Time needed for the 24-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00030166

Time needed for the 25-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00029265

Time needed for the 26-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00028916

Time needed for the 27-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

2.7. HIMPC 127

DeltaR=0.00029102

Time needed for the 28-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00029781

Time needed for the 29-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00030956

Time needed for the 30-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00032668

Time needed for the 31-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00035

Time needed for the 32-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00038084

Time needed for the 33-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00042127

Time needed for the 34-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.0004745

Time needed for the 35-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.00054556

Time needed for the 36-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

128 CHAPTER 2. EXAMPLES

DeltaR=0.00064275

Time needed for the 37-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.0058935

Time needed for the 38-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.027401

Time needed for the 39-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.079081

Time needed for the 40-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

DeltaR=0.19829

Time needed for the 41-th problem of the 1 subsystem

+ Solver chosen : CPLEX-IBM

+ Processing objective h(x)

+ Processing F(x)

+ CPLEX-IBM

...DeltaR=0

Simulation

Simulation time

Tsim = 3*60;

t=0:TL:Tsim-TL;

Number of iteration of the discrete time loop

TT=Tsim/TL;

Define references

r=[.65*ones(1,TT/2-15) .2*ones(1,TT/2+15);

2.7. HIMPC 129

.8*ones(1,TT/4+10) .7*ones(1,TT*2/4+10) .4*ones(1,TT*1/4-20);

0.0*ones(1,TT/2-120) 0.7*ones(1,TT/2+120);

0.0*ones(1,TT)];

Initial condition

x0=[0 0 0 0 0 0 0 0]’;

Initial output

u0=zeros(4,1);

x=[x0 x0];

cx=x;

u=u0;

cu=u;

Simulation loop

for k=2:TT-1

For each controller

for i=1:nDec

Determine which states are used by the current controller

xx=x(dec(i).x,k);

%yy=[xx;himpc_obj.Ho{i}*xx;himpc_obj.Hy{i}*u(dec(i).u,k-1)];

Determine the references that applies to the current sub-system

rr=[r(dec(i).y,k);zeros(ncu(i),1)];

If it is not time to change the reference (input given by the current controller) then use the previous
one

u(dec(i).u,k) = u(dec(i).u,k-1);

Check if it is time for the higher level controller to execute

if mod(k,TH(i)/TL)==2

The controller type is ’track’ the MPC will return the input increment

u(dec(i).u,k)=u(dec(i).u,k-1)+eval(L{i},xx,rr,u(dec(i).u,k-1));

end

end

Update the state

x(:,k+1)=A*x(:,k)+B*u(:,k);

Assume the next input to be the same as current one. That is done for plot reasons which request
x and u to have the same length

u(:,k+1)=u(:,k);

130 CHAPTER 2. EXAMPLES

Centralized

if mod(k,cTH/TL)==2

cu(:,k)=cu(:,k-1)+eval(cL,cx(:,k),[r(:,k);zeros(17,1)],cu(:,k-1));

end

cx(:,k+1)=A*cx(:,k)+B*cu(:,k);

cu(:,k+1)=cu(:,k);

end

if showPlot

Plot the first (continuous blue) and second (dashed blue) mass positions against their references
(continuous red and dash red), respectively

figure(4);

plot(t,x(1,:)’,’b’,t,x(3,:)’,’--b’,t,r(1,:)’,’r’,t,r(2,:)’,’--r’,t,cx(1,:)’,’k’,t,cx(3,:)’,’--k’);

title(’First and second mass positions’)

Plot first and second inputs against their references

figure(5);

plot(t,u(1,:)’,’b’,t,u(2,:)’,’--b’,t,r(1,:)’,’r’,t,r(2,:)’,’--r’)

hold on

plot(t,cu(1,:)’,’k’,t,cu(2,:)’,’--k’)

title(’First and second inputs’)

Plot showing all the mass trajectories against their references

figure(6);

plot(t,x(1:2:7,:)’,’b’,t,cx(1:2:7,:)’,’k’,t,r,’r’)

title(’All mass positions’)

Plot showing all inputs (applied references) against their references

figure(7);

plot(t,u’,’b’,t,cu’,’k’,t,r,’r’)

title(’All inputs’)

end

Computation of performance indices

Compute the MPC cost over the whole simulation horizon

index_d=0;

index_c=0;

for i=TT

index_c=index_c+cx(:,i)’*C’*cost.S(1:4,1:4)*C*cx(:,i)+cu(:,i)’*cost.T*cu(:,i);

index_d=index_d+x(:,i)’*C’*cost.S(1:4,1:4)*C*x(:,i)+u(:,i)’*cost.T*u(:,i);

end

disp([’Comulated const with centralized feedback is ’ num2str(index_c) ...

’ and with decentralized feedback is ’ num2str(index_d)]);

disp([’Performance improvement is ’ num2str(100*(index_c-index_d)/index_d) ’%’])

2.8. DNCS 131

Considerations

Figures 4 and 6 show that the hard constraint that bounds the mass upper position holds for
both masses. Moreover the tracking is effective with limited overshoot. Figure 4 also show that
the system is actually coupled since both masses 3 and 4, whose reference is stationary after time
instant 20, have some fluctuation due to the interaction with neighbors.

Figures 5 and 7 show the references actually applied to the lower level controller. It is interesting
to see how limits imposed have the effect of limiting the overshoot on the mass position. Moreover,
it should be observed that the reference on the second mass (dashed blue line) does not reach the
user defined reference (red continuous line) which is not in the admissible set for references (we
recall that the admissible reference set is the output set tighter by the tuning know factor ∆y for
allowing the determination of a MOAS).

2.8 dncs

Approximating the Convergence Rate of a NCS - Example
This example shows how to find an upperbound on the convergence rate of a given NCS modeled
as discrete-time linear parameter varying (DLPV) system. Specifically we mean solving for an
lower bound on

γ

such that the state of the NCS
x̄

satisfies

||x̄k|| ≤ c||x̄0||(1− γ)k

when the NCS has delays and transmission intervals bounded in a continuous range.

Contents

• Define the Network Control System
• Create ’ncs’ Object
• Generate Stability Data

Define the Network Control System

The plant is a divided into two subsystems which are given as

ẋ1 = A1x1 +B1pu1 +Ac1x2 +Bc1u2

ẋ2 = A2x2 +B2pu2 +Ac2x1 +Bc2u1

132 CHAPTER 2. EXAMPLES

with decentralized state feedback

u1 = K1x1

u2 = K2x2.

The plant subsystem matrices with corresponding feedback gains are defined as

clc

A1=[0.6 -4.2;

0.1 -2.1];

B1=[0.7 1.9;

0 1];

K1= [1.94 -1.40;

-0.56 -0.86];

A2=[-3.2 0.2;

5.3 -0.2];

B2=[0.8;

-0.4];

K2 = [1.36 0.81];

and the coupling matrices are given as

Ac1 = [0.1 2.1;

0.01 0];

Ac2 = [0 0;

0 -0.03];

Bc1 = [-0.02;

-0.01];

Bc2=[0 0;

0 0];

We can express these two coupled systems as one system with the expression

ẋ = Ax+Bu

u = Kx

where

2.8. DNCS 133

A=[A1 Ac1;

Ac2 A2];

B=[B1 Bc1;

Bc2 B2];

K= [K1 zeros(2);

0 0 K2];

where K is a decentralized state feedback gain.

The network that the decentralized NCS is operating on has the following characteristics

h=[0.9, 1.1]; % [hmin,hmax] bounds on the sampling time

tau=[0, 1e-3]; % [taumin,taumax] bounds on the delay

delta = 0; % integer bound on the number of subsequent dropouts

Create ’ncs’ Object

Now we are ready to create a ncs class variables. This is done using the ncsEditor. To open
the ncsEditor simply type ’ncsEditor’ into the command prompt. Since the matrix variables are
defined in the workspace, we can directly input the matrix names into the fields of the ncsEditor
GUI. We do not consider communication constraints in this example so leave that box unchecked.

load exampleNcs

Generate Stability Data

Finally, to determine if out system is stable with a given gamma, we simply plug the ncs object
into the following function:

gamma = 0;

stable = dncs.isNcsStable(’JNF’,’explicit’,’pardep’,gamma);

% where |explicit| is the dropout modeling approach we will use.

% Alternatively one could use the |lngtrans| dropout modeling approach.

% Also, ’CH’ or ’GNB’ are alternative overapproximation choices.

Undefined function or method ’dncs_JNF_CH’ for input arguments of type ’ncs’.

Error in ==> ncs.ncs>ncs.isNcsStable at 154

stable = dncs_JNF_CH(obj,ovraprx,arg1,arg2,arg3);

Error in ==> dncs_example at 96

stable = dncs.isNcsStable(’JNF’,’explicit’,’pardep’,gamma);

We chose gamma=0 since it is the slowest decay rate and it is the most general way to verify system
stability. We also chose the Lyapunov function to be parameter dependent (pardep) and the
overapproximation to be the Jordan Normal Form (JNF).

Now since the above command results in a stable system, we can simply write a loop around this
function to gradually increase gamma until stability cannot be gauranteed, which will provide an

134 CHAPTER 2. EXAMPLES

upper bound on the convervence rate when the loop terminates. A simple example of this loop is
the following:

if stable == 1

while stable == 1 && gamma <= 1

stable = dncs.isNcsStable(’JNF’,’explicit’,’pardep’,gamma);

gamma = gamma +0.1;

if stable == 1

disp([’lower bound on gamma is ’ num2str(gamma)])

disp(’ ’)

end

end

end

Therefore our NCS is stable for h=[0.9, 1.1] and tau=[0, 1e-3]. Furthermore, decay of the
state of our discrete-time system is upperbounded by the expression

||x̄k|| ≤ c||x̄0||(1− 0.3)k

2.9 hncs

Contents

• Comparing the TOD and RR Protocol Stability Regions - Example
• Define the Network Control System
• Create ’ncs’ Object
• Generate Stability Data
• Plot Stability Region Comparision

Comparing the TOD and RR Protocol Stability Regions - Example

This example shows how to compare the robustness of a given control setup which operates under
either the Try-Once-Discard (TOD) network protocol or the Round Robin (RR) network proto-
col. The robustness is compared by means of generating a tradeoff plot between the maximally
allowable transmission interval (MATI) and maximally allowbale delay (MAD).

clc

Define the Network Control System

The plant is a model of a batch reactor, which the dynamics are linearized and given in continuous-
time as

ẋp = Apxp +Bpû

2.9. HNCS 135

y = Cpxp

where

Ap=[1.38 -0.2077 6.715 -5.676;

-0.5814 -4.29 0 0.675;

1.067 4.273 -6.654 5.893;

0.048 4.273 1.343 -2.104];

Bp=[0 0;

5.679 0 ;

1.136 -3.146;

1.136 0];

Cp=[1 0 1 -1;

0 1 0 0];

Next we define the controller, which is given as

ẋc = Acxc +Bcŷ

u = Ccxc +Dcŷ

where

Ac=zeros(2);

Bc=[0 1;

1 0];

Cc=[-2 0 ;

0 8];

Dc=[0 -2;

5 0];

Where sy=[1 1] indicates that both outputs of the plant are wired directly to the input of the
controller and Su=[0 0] indicates that both outputs of the controller are shared on the network.
Lastly, l=2 means that the two outputs which are shared on the network are divided into two
nodes.

136 CHAPTER 2. EXAMPLES

Create ’ncs’ Object

Now we are ready to create a ncs object. Since we want to compare two different protocols, we
must create two seperate ncs objects. It is easiest to use the ’ncsEditor’ to create these objects.
To open the ncsEditor simply type ’ncsEditor’ into the command prompt.

Once the ’ncsEditor’ is opened, first input Ap,Bp and Cp into the plant parameters and then
select ’C-LTI Dynamic Feedback’ in the drop down menu Next input Ac,Bc,Cc,and Dc into the
controller parameters. The transmission interval, delay and dropout boxes can be filled with 0.
Check the box next to Comm Constraints an click ’Edit Nodes’ and define two nodes where node1
has u01,u02 and y01 and node2 has u01,u02 and y02 then click ’save’. Chose the protocol as RR
and click ’File > Export’ and name the ncs as hncs RR and change the protocol to TOD and
click ’File > Export’ and name this ncs as hncs TOD.

load exampleNcs

Generate Stability Data

Finally, to generate the data for plotting the stability regions we simply plug each of the ncs

variables into the following function

Sy = [1 1]; %[y1 y2 ... yN] where yi is 1 for networked, 0 for wired

Su = [0 0]; %[u1 u2 ... uM] where yi is 1 for networked, 0 for wired

[Hmati1,Tmad1] = hncs_RR.findNcsStablilityTradeoff([0 0],[1 1]);

[Hmati2,Tmad2] = hncs_TOD.findNcsStablilityTradeoff([0 0],[1 1]);

Undefined function or method ’ncs_hyb_outputfb’ for input arguments of type ’ncs’.

Error in ==> ncs.ncs>ncs.findNcsStablilityTradeoff at 189

[Hmati,Tmad] = ncs_hyb_outputfb(obj,Su,Sy);

Error in ==> hncs_example at 77

[Hmati1,Tmad1] = hncs_RR.findNcsStablilityTradeoff([0 0],[1 1]);

Plot Stability Region Comparision

Now we can plot the resulting data to see the comparision between the two protocols

plot(Hmati1,Tmad1,’r’);

hold on;

plot(Hmati2,Tmad2,’b’);

legend(’TOD - Output FB’,’RR - Output FB’)

title(’Tradeoff Curves’)

xlabel(’MATI’,’interpreter’, ’latex’)

ylabel(’MAD’, ’interpreter’, ’latex’)

This plot indicates that the NCS is robustly stable in the region lying below the line drawn in
the graph. From this comparision it is clear that the TOD protocol is more robust than the RR
protocol.

	Classes definition
	LSmodel
	WNmodel
	acg
	decLMI
	dlincon
	eampc
	himpc
	ncs

	Examples
	LSmodel
	WNmodel
	acg
	decLMI
	dlincon
	eampc
	himpc
	dncs
	hncs

